LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cdrvgb()

subroutine cdrvgb ( logical, dimension( * )  dotype,
integer  nn,
integer, dimension( * )  nval,
integer  nrhs,
real  thresh,
logical  tsterr,
complex, dimension( * )  a,
integer  la,
complex, dimension( * )  afb,
integer  lafb,
complex, dimension( * )  asav,
complex, dimension( * )  b,
complex, dimension( * )  bsav,
complex, dimension( * )  x,
complex, dimension( * )  xact,
real, dimension( * )  s,
complex, dimension( * )  work,
real, dimension( * )  rwork,
integer, dimension( * )  iwork,
integer  nout 
)

CDRVGBX

Purpose:
 CDRVGB tests the driver routines CGBSV, -SVX, and -SVXX.

 Note that this file is used only when the XBLAS are available,
 otherwise cdrvgb.f defines this subroutine.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is REAL
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[out]A
          A is COMPLEX array, dimension (LA)
[in]LA
          LA is INTEGER
          The length of the array A.  LA >= (2*NMAX-1)*NMAX
          where NMAX is the largest entry in NVAL.
[out]AFB
          AFB is COMPLEX array, dimension (LAFB)
[in]LAFB
          LAFB is INTEGER
          The length of the array AFB.  LAFB >= (3*NMAX-2)*NMAX
          where NMAX is the largest entry in NVAL.
[out]ASAV
          ASAV is COMPLEX array, dimension (LA)
[out]B
          B is COMPLEX array, dimension (NMAX*NRHS)
[out]BSAV
          BSAV is COMPLEX array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX array, dimension (NMAX*NRHS)
[out]S
          S is REAL array, dimension (2*NMAX)
[out]WORK
          WORK is COMPLEX array, dimension
                      (NMAX*max(3,NRHS,NMAX))
[out]RWORK
          RWORK is REAL array, dimension
                      (max(2*NMAX,NMAX+2*NRHS))
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 172 of file cdrvgbx.f.

175*
176* -- LAPACK test routine --
177* -- LAPACK is a software package provided by Univ. of Tennessee, --
178* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
179*
180* .. Scalar Arguments ..
181 LOGICAL TSTERR
182 INTEGER LA, LAFB, NN, NOUT, NRHS
183 REAL THRESH
184* ..
185* .. Array Arguments ..
186 LOGICAL DOTYPE( * )
187 INTEGER IWORK( * ), NVAL( * )
188 REAL RWORK( * ), S( * )
189 COMPLEX A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
190 $ WORK( * ), X( * ), XACT( * )
191* ..
192*
193* =====================================================================
194*
195* .. Parameters ..
196 REAL ONE, ZERO
197 parameter( one = 1.0e+0, zero = 0.0e+0 )
198 INTEGER NTYPES
199 parameter( ntypes = 8 )
200 INTEGER NTESTS
201 parameter( ntests = 7 )
202 INTEGER NTRAN
203 parameter( ntran = 3 )
204* ..
205* .. Local Scalars ..
206 LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
207 CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
208 CHARACTER*3 PATH
209 INTEGER I, I1, I2, IEQUED, IFACT, IKL, IKU, IMAT, IN,
210 $ INFO, IOFF, ITRAN, IZERO, J, K, K1, KL, KU,
211 $ LDA, LDAFB, LDB, MODE, N, NB, NBMIN, NERRS,
212 $ NFACT, NFAIL, NIMAT, NKL, NKU, NRUN, NT,
213 $ N_ERR_BNDS
214 REAL AINVNM, AMAX, ANORM, ANORMI, ANORMO, ANRMPV,
215 $ CNDNUM, COLCND, RCOND, RCONDC, RCONDI, RCONDO,
216 $ ROLDC, ROLDI, ROLDO, ROWCND, RPVGRW,
217 $ RPVGRW_SVXX
218* ..
219* .. Local Arrays ..
220 CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
221 INTEGER ISEED( 4 ), ISEEDY( 4 )
222 REAL RDUM( 1 ), RESULT( NTESTS ), BERR( NRHS ),
223 $ ERRBNDS_N( NRHS,3 ), ERRBNDS_C( NRHS, 3 )
224* ..
225* .. External Functions ..
226 LOGICAL LSAME
227 REAL CLANGB, CLANGE, CLANTB, SGET06, SLAMCH,
228 $ CLA_GBRPVGRW
229 EXTERNAL lsame, clangb, clange, clantb, sget06, slamch,
231* ..
232* .. External Subroutines ..
233 EXTERNAL aladhd, alaerh, alasvm, cerrvx, cgbequ, cgbsv,
237* ..
238* .. Intrinsic Functions ..
239 INTRINSIC abs, cmplx, max, min
240* ..
241* .. Scalars in Common ..
242 LOGICAL LERR, OK
243 CHARACTER*32 SRNAMT
244 INTEGER INFOT, NUNIT
245* ..
246* .. Common blocks ..
247 COMMON / infoc / infot, nunit, ok, lerr
248 COMMON / srnamc / srnamt
249* ..
250* .. Data statements ..
251 DATA iseedy / 1988, 1989, 1990, 1991 /
252 DATA transs / 'N', 'T', 'C' /
253 DATA facts / 'F', 'N', 'E' /
254 DATA equeds / 'N', 'R', 'C', 'B' /
255* ..
256* .. Executable Statements ..
257*
258* Initialize constants and the random number seed.
259*
260 path( 1: 1 ) = 'Complex precision'
261 path( 2: 3 ) = 'GB'
262 nrun = 0
263 nfail = 0
264 nerrs = 0
265 DO 10 i = 1, 4
266 iseed( i ) = iseedy( i )
267 10 CONTINUE
268*
269* Test the error exits
270*
271 IF( tsterr )
272 $ CALL cerrvx( path, nout )
273 infot = 0
274*
275* Set the block size and minimum block size for testing.
276*
277 nb = 1
278 nbmin = 2
279 CALL xlaenv( 1, nb )
280 CALL xlaenv( 2, nbmin )
281*
282* Do for each value of N in NVAL
283*
284 DO 150 in = 1, nn
285 n = nval( in )
286 ldb = max( n, 1 )
287 xtype = 'N'
288*
289* Set limits on the number of loop iterations.
290*
291 nkl = max( 1, min( n, 4 ) )
292 IF( n.EQ.0 )
293 $ nkl = 1
294 nku = nkl
295 nimat = ntypes
296 IF( n.LE.0 )
297 $ nimat = 1
298*
299 DO 140 ikl = 1, nkl
300*
301* Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes
302* it easier to skip redundant values for small values of N.
303*
304 IF( ikl.EQ.1 ) THEN
305 kl = 0
306 ELSE IF( ikl.EQ.2 ) THEN
307 kl = max( n-1, 0 )
308 ELSE IF( ikl.EQ.3 ) THEN
309 kl = ( 3*n-1 ) / 4
310 ELSE IF( ikl.EQ.4 ) THEN
311 kl = ( n+1 ) / 4
312 END IF
313 DO 130 iku = 1, nku
314*
315* Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order
316* makes it easier to skip redundant values for small
317* values of N.
318*
319 IF( iku.EQ.1 ) THEN
320 ku = 0
321 ELSE IF( iku.EQ.2 ) THEN
322 ku = max( n-1, 0 )
323 ELSE IF( iku.EQ.3 ) THEN
324 ku = ( 3*n-1 ) / 4
325 ELSE IF( iku.EQ.4 ) THEN
326 ku = ( n+1 ) / 4
327 END IF
328*
329* Check that A and AFB are big enough to generate this
330* matrix.
331*
332 lda = kl + ku + 1
333 ldafb = 2*kl + ku + 1
334 IF( lda*n.GT.la .OR. ldafb*n.GT.lafb ) THEN
335 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
336 $ CALL aladhd( nout, path )
337 IF( lda*n.GT.la ) THEN
338 WRITE( nout, fmt = 9999 )la, n, kl, ku,
339 $ n*( kl+ku+1 )
340 nerrs = nerrs + 1
341 END IF
342 IF( ldafb*n.GT.lafb ) THEN
343 WRITE( nout, fmt = 9998 )lafb, n, kl, ku,
344 $ n*( 2*kl+ku+1 )
345 nerrs = nerrs + 1
346 END IF
347 GO TO 130
348 END IF
349*
350 DO 120 imat = 1, nimat
351*
352* Do the tests only if DOTYPE( IMAT ) is true.
353*
354 IF( .NOT.dotype( imat ) )
355 $ GO TO 120
356*
357* Skip types 2, 3, or 4 if the matrix is too small.
358*
359 zerot = imat.GE.2 .AND. imat.LE.4
360 IF( zerot .AND. n.LT.imat-1 )
361 $ GO TO 120
362*
363* Set up parameters with CLATB4 and generate a
364* test matrix with CLATMS.
365*
366 CALL clatb4( path, imat, n, n, TYPE, KL, KU, ANORM,
367 $ MODE, CNDNUM, DIST )
368 rcondc = one / cndnum
369*
370 srnamt = 'CLATMS'
371 CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
372 $ CNDNUM, ANORM, KL, KU, 'Z', A, LDA, WORK,
373 $ INFO )
374*
375* Check the error code from CLATMS.
376*
377 IF( info.NE.0 ) THEN
378 CALL alaerh( path, 'CLATMS', info, 0, ' ', n, n,
379 $ kl, ku, -1, imat, nfail, nerrs, nout )
380 GO TO 120
381 END IF
382*
383* For types 2, 3, and 4, zero one or more columns of
384* the matrix to test that INFO is returned correctly.
385*
386 izero = 0
387 IF( zerot ) THEN
388 IF( imat.EQ.2 ) THEN
389 izero = 1
390 ELSE IF( imat.EQ.3 ) THEN
391 izero = n
392 ELSE
393 izero = n / 2 + 1
394 END IF
395 ioff = ( izero-1 )*lda
396 IF( imat.LT.4 ) THEN
397 i1 = max( 1, ku+2-izero )
398 i2 = min( kl+ku+1, ku+1+( n-izero ) )
399 DO 20 i = i1, i2
400 a( ioff+i ) = zero
401 20 CONTINUE
402 ELSE
403 DO 40 j = izero, n
404 DO 30 i = max( 1, ku+2-j ),
405 $ min( kl+ku+1, ku+1+( n-j ) )
406 a( ioff+i ) = zero
407 30 CONTINUE
408 ioff = ioff + lda
409 40 CONTINUE
410 END IF
411 END IF
412*
413* Save a copy of the matrix A in ASAV.
414*
415 CALL clacpy( 'Full', kl+ku+1, n, a, lda, asav, lda )
416*
417 DO 110 iequed = 1, 4
418 equed = equeds( iequed )
419 IF( iequed.EQ.1 ) THEN
420 nfact = 3
421 ELSE
422 nfact = 1
423 END IF
424*
425 DO 100 ifact = 1, nfact
426 fact = facts( ifact )
427 prefac = lsame( fact, 'F' )
428 nofact = lsame( fact, 'N' )
429 equil = lsame( fact, 'E' )
430*
431 IF( zerot ) THEN
432 IF( prefac )
433 $ GO TO 100
434 rcondo = zero
435 rcondi = zero
436*
437 ELSE IF( .NOT.nofact ) THEN
438*
439* Compute the condition number for comparison
440* with the value returned by SGESVX (FACT =
441* 'N' reuses the condition number from the
442* previous iteration with FACT = 'F').
443*
444 CALL clacpy( 'Full', kl+ku+1, n, asav, lda,
445 $ afb( kl+1 ), ldafb )
446 IF( equil .OR. iequed.GT.1 ) THEN
447*
448* Compute row and column scale factors to
449* equilibrate the matrix A.
450*
451 CALL cgbequ( n, n, kl, ku, afb( kl+1 ),
452 $ ldafb, s, s( n+1 ), rowcnd,
453 $ colcnd, amax, info )
454 IF( info.EQ.0 .AND. n.GT.0 ) THEN
455 IF( lsame( equed, 'R' ) ) THEN
456 rowcnd = zero
457 colcnd = one
458 ELSE IF( lsame( equed, 'C' ) ) THEN
459 rowcnd = one
460 colcnd = zero
461 ELSE IF( lsame( equed, 'B' ) ) THEN
462 rowcnd = zero
463 colcnd = zero
464 END IF
465*
466* Equilibrate the matrix.
467*
468 CALL claqgb( n, n, kl, ku, afb( kl+1 ),
469 $ ldafb, s, s( n+1 ),
470 $ rowcnd, colcnd, amax,
471 $ equed )
472 END IF
473 END IF
474*
475* Save the condition number of the
476* non-equilibrated system for use in CGET04.
477*
478 IF( equil ) THEN
479 roldo = rcondo
480 roldi = rcondi
481 END IF
482*
483* Compute the 1-norm and infinity-norm of A.
484*
485 anormo = clangb( '1', n, kl, ku, afb( kl+1 ),
486 $ ldafb, rwork )
487 anormi = clangb( 'I', n, kl, ku, afb( kl+1 ),
488 $ ldafb, rwork )
489*
490* Factor the matrix A.
491*
492 CALL cgbtrf( n, n, kl, ku, afb, ldafb, iwork,
493 $ info )
494*
495* Form the inverse of A.
496*
497 CALL claset( 'Full', n, n, cmplx( zero ),
498 $ cmplx( one ), work, ldb )
499 srnamt = 'CGBTRS'
500 CALL cgbtrs( 'No transpose', n, kl, ku, n,
501 $ afb, ldafb, iwork, work, ldb,
502 $ info )
503*
504* Compute the 1-norm condition number of A.
505*
506 ainvnm = clange( '1', n, n, work, ldb,
507 $ rwork )
508 IF( anormo.LE.zero .OR. ainvnm.LE.zero ) THEN
509 rcondo = one
510 ELSE
511 rcondo = ( one / anormo ) / ainvnm
512 END IF
513*
514* Compute the infinity-norm condition number
515* of A.
516*
517 ainvnm = clange( 'I', n, n, work, ldb,
518 $ rwork )
519 IF( anormi.LE.zero .OR. ainvnm.LE.zero ) THEN
520 rcondi = one
521 ELSE
522 rcondi = ( one / anormi ) / ainvnm
523 END IF
524 END IF
525*
526 DO 90 itran = 1, ntran
527*
528* Do for each value of TRANS.
529*
530 trans = transs( itran )
531 IF( itran.EQ.1 ) THEN
532 rcondc = rcondo
533 ELSE
534 rcondc = rcondi
535 END IF
536*
537* Restore the matrix A.
538*
539 CALL clacpy( 'Full', kl+ku+1, n, asav, lda,
540 $ a, lda )
541*
542* Form an exact solution and set the right hand
543* side.
544*
545 srnamt = 'CLARHS'
546 CALL clarhs( path, xtype, 'Full', trans, n,
547 $ n, kl, ku, nrhs, a, lda, xact,
548 $ ldb, b, ldb, iseed, info )
549 xtype = 'C'
550 CALL clacpy( 'Full', n, nrhs, b, ldb, bsav,
551 $ ldb )
552*
553 IF( nofact .AND. itran.EQ.1 ) THEN
554*
555* --- Test CGBSV ---
556*
557* Compute the LU factorization of the matrix
558* and solve the system.
559*
560 CALL clacpy( 'Full', kl+ku+1, n, a, lda,
561 $ afb( kl+1 ), ldafb )
562 CALL clacpy( 'Full', n, nrhs, b, ldb, x,
563 $ ldb )
564*
565 srnamt = 'CGBSV '
566 CALL cgbsv( n, kl, ku, nrhs, afb, ldafb,
567 $ iwork, x, ldb, info )
568*
569* Check error code from CGBSV .
570*
571 IF( info.NE.izero )
572 $ CALL alaerh( path, 'CGBSV ', info,
573 $ izero, ' ', n, n, kl, ku,
574 $ nrhs, imat, nfail, nerrs,
575 $ nout )
576*
577* Reconstruct matrix from factors and
578* compute residual.
579*
580 CALL cgbt01( n, n, kl, ku, a, lda, afb,
581 $ ldafb, iwork, work,
582 $ result( 1 ) )
583 nt = 1
584 IF( izero.EQ.0 ) THEN
585*
586* Compute residual of the computed
587* solution.
588*
589 CALL clacpy( 'Full', n, nrhs, b, ldb,
590 $ work, ldb )
591 CALL cgbt02( 'No transpose', n, n, kl,
592 $ ku, nrhs, a, lda, x, ldb,
593 $ work, ldb, rwork,
594 $ result( 2 ) )
595*
596* Check solution from generated exact
597* solution.
598*
599 CALL cget04( n, nrhs, x, ldb, xact,
600 $ ldb, rcondc, result( 3 ) )
601 nt = 3
602 END IF
603*
604* Print information about the tests that did
605* not pass the threshold.
606*
607 DO 50 k = 1, nt
608 IF( result( k ).GE.thresh ) THEN
609 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
610 $ CALL aladhd( nout, path )
611 WRITE( nout, fmt = 9997 )'CGBSV ',
612 $ n, kl, ku, imat, k, result( k )
613 nfail = nfail + 1
614 END IF
615 50 CONTINUE
616 nrun = nrun + nt
617 END IF
618*
619* --- Test CGBSVX ---
620*
621 IF( .NOT.prefac )
622 $ CALL claset( 'Full', 2*kl+ku+1, n,
623 $ cmplx( zero ), cmplx( zero ),
624 $ afb, ldafb )
625 CALL claset( 'Full', n, nrhs, cmplx( zero ),
626 $ cmplx( zero ), x, ldb )
627 IF( iequed.GT.1 .AND. n.GT.0 ) THEN
628*
629* Equilibrate the matrix if FACT = 'F' and
630* EQUED = 'R', 'C', or 'B'.
631*
632 CALL claqgb( n, n, kl, ku, a, lda, s,
633 $ s( n+1 ), rowcnd, colcnd,
634 $ amax, equed )
635 END IF
636*
637* Solve the system and compute the condition
638* number and error bounds using CGBSVX.
639*
640 srnamt = 'CGBSVX'
641 CALL cgbsvx( fact, trans, n, kl, ku, nrhs, a,
642 $ lda, afb, ldafb, iwork, equed,
643 $ s, s( ldb+1 ), b, ldb, x, ldb,
644 $ rcond, rwork, rwork( nrhs+1 ),
645 $ work, rwork( 2*nrhs+1 ), info )
646*
647* Check the error code from CGBSVX.
648*
649 IF( info.NE.izero )
650 $ CALL alaerh( path, 'CGBSVX', info, izero,
651 $ fact // trans, n, n, kl, ku,
652 $ nrhs, imat, nfail, nerrs,
653 $ nout )
654*
655* Compare RWORK(2*NRHS+1) from CGBSVX with the
656* computed reciprocal pivot growth RPVGRW
657*
658 IF( info.NE.0 ) THEN
659 anrmpv = zero
660 DO 70 j = 1, info
661 DO 60 i = max( ku+2-j, 1 ),
662 $ min( n+ku+1-j, kl+ku+1 )
663 anrmpv = max( anrmpv,
664 $ abs( a( i+( j-1 )*lda ) ) )
665 60 CONTINUE
666 70 CONTINUE
667 rpvgrw = clantb( 'M', 'U', 'N', info,
668 $ min( info-1, kl+ku ),
669 $ afb( max( 1, kl+ku+2-info ) ),
670 $ ldafb, rdum )
671 IF( rpvgrw.EQ.zero ) THEN
672 rpvgrw = one
673 ELSE
674 rpvgrw = anrmpv / rpvgrw
675 END IF
676 ELSE
677 rpvgrw = clantb( 'M', 'U', 'N', n, kl+ku,
678 $ afb, ldafb, rdum )
679 IF( rpvgrw.EQ.zero ) THEN
680 rpvgrw = one
681 ELSE
682 rpvgrw = clangb( 'M', n, kl, ku, a,
683 $ lda, rdum ) / rpvgrw
684 END IF
685 END IF
686 result( 7 ) = abs( rpvgrw-rwork( 2*nrhs+1 ) )
687 $ / max( rwork( 2*nrhs+1 ),
688 $ rpvgrw ) / slamch( 'E' )
689*
690 IF( .NOT.prefac ) THEN
691*
692* Reconstruct matrix from factors and
693* compute residual.
694*
695 CALL cgbt01( n, n, kl, ku, a, lda, afb,
696 $ ldafb, iwork, work,
697 $ result( 1 ) )
698 k1 = 1
699 ELSE
700 k1 = 2
701 END IF
702*
703 IF( info.EQ.0 ) THEN
704 trfcon = .false.
705*
706* Compute residual of the computed solution.
707*
708 CALL clacpy( 'Full', n, nrhs, bsav, ldb,
709 $ work, ldb )
710 CALL cgbt02( trans, n, n, kl, ku, nrhs,
711 $ asav, lda, x, ldb, work, ldb,
712 $ rwork( 2*nrhs+1 ),
713 $ result( 2 ) )
714*
715* Check solution from generated exact
716* solution.
717*
718 IF( nofact .OR. ( prefac .AND.
719 $ lsame( equed, 'N' ) ) ) THEN
720 CALL cget04( n, nrhs, x, ldb, xact,
721 $ ldb, rcondc, result( 3 ) )
722 ELSE
723 IF( itran.EQ.1 ) THEN
724 roldc = roldo
725 ELSE
726 roldc = roldi
727 END IF
728 CALL cget04( n, nrhs, x, ldb, xact,
729 $ ldb, roldc, result( 3 ) )
730 END IF
731*
732* Check the error bounds from iterative
733* refinement.
734*
735 CALL cgbt05( trans, n, kl, ku, nrhs, asav,
736 $ lda, bsav, ldb, x, ldb, xact,
737 $ ldb, rwork, rwork( nrhs+1 ),
738 $ result( 4 ) )
739 ELSE
740 trfcon = .true.
741 END IF
742*
743* Compare RCOND from CGBSVX with the computed
744* value in RCONDC.
745*
746 result( 6 ) = sget06( rcond, rcondc )
747*
748* Print information about the tests that did
749* not pass the threshold.
750*
751 IF( .NOT.trfcon ) THEN
752 DO 80 k = k1, ntests
753 IF( result( k ).GE.thresh ) THEN
754 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
755 $ CALL aladhd( nout, path )
756 IF( prefac ) THEN
757 WRITE( nout, fmt = 9995 )
758 $ 'CGBSVX', fact, trans, n, kl,
759 $ ku, equed, imat, k,
760 $ result( k )
761 ELSE
762 WRITE( nout, fmt = 9996 )
763 $ 'CGBSVX', fact, trans, n, kl,
764 $ ku, imat, k, result( k )
765 END IF
766 nfail = nfail + 1
767 END IF
768 80 CONTINUE
769 nrun = nrun + 7 - k1
770 ELSE
771 IF( result( 1 ).GE.thresh .AND. .NOT.
772 $ prefac ) THEN
773 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
774 $ CALL aladhd( nout, path )
775 IF( prefac ) THEN
776 WRITE( nout, fmt = 9995 )'CGBSVX',
777 $ fact, trans, n, kl, ku, equed,
778 $ imat, 1, result( 1 )
779 ELSE
780 WRITE( nout, fmt = 9996 )'CGBSVX',
781 $ fact, trans, n, kl, ku, imat, 1,
782 $ result( 1 )
783 END IF
784 nfail = nfail + 1
785 nrun = nrun + 1
786 END IF
787 IF( result( 6 ).GE.thresh ) THEN
788 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
789 $ CALL aladhd( nout, path )
790 IF( prefac ) THEN
791 WRITE( nout, fmt = 9995 )'CGBSVX',
792 $ fact, trans, n, kl, ku, equed,
793 $ imat, 6, result( 6 )
794 ELSE
795 WRITE( nout, fmt = 9996 )'CGBSVX',
796 $ fact, trans, n, kl, ku, imat, 6,
797 $ result( 6 )
798 END IF
799 nfail = nfail + 1
800 nrun = nrun + 1
801 END IF
802 IF( result( 7 ).GE.thresh ) THEN
803 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
804 $ CALL aladhd( nout, path )
805 IF( prefac ) THEN
806 WRITE( nout, fmt = 9995 )'CGBSVX',
807 $ fact, trans, n, kl, ku, equed,
808 $ imat, 7, result( 7 )
809 ELSE
810 WRITE( nout, fmt = 9996 )'CGBSVX',
811 $ fact, trans, n, kl, ku, imat, 7,
812 $ result( 7 )
813 END IF
814 nfail = nfail + 1
815 nrun = nrun + 1
816 END IF
817 END IF
818
819* --- Test CGBSVXX ---
820
821* Restore the matrices A and B.
822
823c write(*,*) 'begin cgbsvxx testing'
824
825 CALL clacpy( 'Full', kl+ku+1, n, asav, lda, a,
826 $ lda )
827 CALL clacpy( 'Full', n, nrhs, bsav, ldb, b, ldb )
828
829 IF( .NOT.prefac )
830 $ CALL claset( 'Full', 2*kl+ku+1, n,
831 $ cmplx( zero ), cmplx( zero ),
832 $ afb, ldafb )
833 CALL claset( 'Full', n, nrhs,
834 $ cmplx( zero ), cmplx( zero ),
835 $ x, ldb )
836 IF( iequed.GT.1 .AND. n.GT.0 ) THEN
837*
838* Equilibrate the matrix if FACT = 'F' and
839* EQUED = 'R', 'C', or 'B'.
840*
841 CALL claqgb( n, n, kl, ku, a, lda, s,
842 $ s( n+1 ), rowcnd, colcnd, amax, equed )
843 END IF
844*
845* Solve the system and compute the condition number
846* and error bounds using CGBSVXX.
847*
848 srnamt = 'CGBSVXX'
849 n_err_bnds = 3
850 CALL cgbsvxx( fact, trans, n, kl, ku, nrhs, a, lda,
851 $ afb, ldafb, iwork, equed, s, s( n+1 ), b, ldb,
852 $ x, ldb, rcond, rpvgrw_svxx, berr, n_err_bnds,
853 $ errbnds_n, errbnds_c, 0, zero, work,
854 $ rwork, info )
855*
856* Check the error code from CGBSVXX.
857*
858 IF( info.EQ.n+1 ) GOTO 90
859 IF( info.NE.izero ) THEN
860 CALL alaerh( path, 'CGBSVXX', info, izero,
861 $ fact // trans, n, n, -1, -1, nrhs,
862 $ imat, nfail, nerrs, nout )
863 GOTO 90
864 END IF
865*
866* Compare rpvgrw_svxx from CGESVXX with the computed
867* reciprocal pivot growth factor RPVGRW
868*
869
870 IF ( info .GT. 0 .AND. info .LT. n+1 ) THEN
871 rpvgrw = cla_gbrpvgrw(n, kl, ku, info, a, lda,
872 $ afb, ldafb)
873 ELSE
874 rpvgrw = cla_gbrpvgrw(n, kl, ku, n, a, lda,
875 $ afb, ldafb)
876 ENDIF
877
878 result( 7 ) = abs( rpvgrw-rpvgrw_svxx ) /
879 $ max( rpvgrw_svxx, rpvgrw ) /
880 $ slamch( 'E' )
881*
882 IF( .NOT.prefac ) THEN
883*
884* Reconstruct matrix from factors and compute
885* residual.
886*
887 CALL cgbt01( n, n, kl, ku, a, lda, afb, ldafb,
888 $ iwork, work( 2*nrhs+1 ), result( 1 ) )
889 k1 = 1
890 ELSE
891 k1 = 2
892 END IF
893*
894 IF( info.EQ.0 ) THEN
895 trfcon = .false.
896*
897* Compute residual of the computed solution.
898*
899 CALL clacpy( 'Full', n, nrhs, bsav, ldb, work,
900 $ ldb )
901 CALL cgbt02( trans, n, n, kl, ku, nrhs, asav,
902 $ lda, x, ldb, work, ldb, rwork,
903 $ result( 2 ) )
904*
905* Check solution from generated exact solution.
906*
907 IF( nofact .OR. ( prefac .AND. lsame( equed,
908 $ 'N' ) ) ) THEN
909 CALL cget04( n, nrhs, x, ldb, xact, ldb,
910 $ rcondc, result( 3 ) )
911 ELSE
912 IF( itran.EQ.1 ) THEN
913 roldc = roldo
914 ELSE
915 roldc = roldi
916 END IF
917 CALL cget04( n, nrhs, x, ldb, xact, ldb,
918 $ roldc, result( 3 ) )
919 END IF
920 ELSE
921 trfcon = .true.
922 END IF
923*
924* Compare RCOND from CGBSVXX with the computed value
925* in RCONDC.
926*
927 result( 6 ) = sget06( rcond, rcondc )
928*
929* Print information about the tests that did not pass
930* the threshold.
931*
932 IF( .NOT.trfcon ) THEN
933 DO 45 k = k1, ntests
934 IF( result( k ).GE.thresh ) THEN
935 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
936 $ CALL aladhd( nout, path )
937 IF( prefac ) THEN
938 WRITE( nout, fmt = 9995 )'CGBSVXX',
939 $ fact, trans, n, kl, ku, equed,
940 $ imat, k, result( k )
941 ELSE
942 WRITE( nout, fmt = 9996 )'CGBSVXX',
943 $ fact, trans, n, kl, ku, imat, k,
944 $ result( k )
945 END IF
946 nfail = nfail + 1
947 END IF
948 45 CONTINUE
949 nrun = nrun + 7 - k1
950 ELSE
951 IF( result( 1 ).GE.thresh .AND. .NOT.prefac )
952 $ THEN
953 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
954 $ CALL aladhd( nout, path )
955 IF( prefac ) THEN
956 WRITE( nout, fmt = 9995 )'CGBSVXX', fact,
957 $ trans, n, kl, ku, equed, imat, 1,
958 $ result( 1 )
959 ELSE
960 WRITE( nout, fmt = 9996 )'CGBSVXX', fact,
961 $ trans, n, kl, ku, imat, 1,
962 $ result( 1 )
963 END IF
964 nfail = nfail + 1
965 nrun = nrun + 1
966 END IF
967 IF( result( 6 ).GE.thresh ) THEN
968 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
969 $ CALL aladhd( nout, path )
970 IF( prefac ) THEN
971 WRITE( nout, fmt = 9995 )'CGBSVXX', fact,
972 $ trans, n, kl, ku, equed, imat, 6,
973 $ result( 6 )
974 ELSE
975 WRITE( nout, fmt = 9996 )'CGBSVXX', fact,
976 $ trans, n, kl, ku, imat, 6,
977 $ result( 6 )
978 END IF
979 nfail = nfail + 1
980 nrun = nrun + 1
981 END IF
982 IF( result( 7 ).GE.thresh ) THEN
983 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
984 $ CALL aladhd( nout, path )
985 IF( prefac ) THEN
986 WRITE( nout, fmt = 9995 )'CGBSVXX', fact,
987 $ trans, n, kl, ku, equed, imat, 7,
988 $ result( 7 )
989 ELSE
990 WRITE( nout, fmt = 9996 )'CGBSVXX', fact,
991 $ trans, n, kl, ku, imat, 7,
992 $ result( 7 )
993 END IF
994 nfail = nfail + 1
995 nrun = nrun + 1
996 END IF
997*
998 END IF
999*
1000 90 CONTINUE
1001 100 CONTINUE
1002 110 CONTINUE
1003 120 CONTINUE
1004 130 CONTINUE
1005 140 CONTINUE
1006 150 CONTINUE
1007*
1008* Print a summary of the results.
1009*
1010 CALL alasvm( path, nout, nfail, nrun, nerrs )
1011*
1012
1013* Test Error Bounds from CGBSVXX
1014
1015 CALL cebchvxx(thresh, path)
1016
1017 9999 FORMAT( ' *** In CDRVGB, LA=', i5, ' is too small for N=', i5,
1018 $ ', KU=', i5, ', KL=', i5, / ' ==> Increase LA to at least ',
1019 $ i5 )
1020 9998 FORMAT( ' *** In CDRVGB, LAFB=', i5, ' is too small for N=', i5,
1021 $ ', KU=', i5, ', KL=', i5, /
1022 $ ' ==> Increase LAFB to at least ', i5 )
1023 9997 FORMAT( 1x, a, ', N=', i5, ', KL=', i5, ', KU=', i5, ', type ',
1024 $ i1, ', test(', i1, ')=', g12.5 )
1025 9996 FORMAT( 1x, a, '( ''', a1, ''',''', a1, ''',', i5, ',', i5, ',',
1026 $ i5, ',...), type ', i1, ', test(', i1, ')=', g12.5 )
1027 9995 FORMAT( 1x, a, '( ''', a1, ''',''', a1, ''',', i5, ',', i5, ',',
1028 $ i5, ',...), EQUED=''', a1, ''', type ', i1, ', test(', i1,
1029 $ ')=', g12.5 )
1030*
1031 RETURN
1032*
1033* End of CDRVGBX
1034*
subroutine alasvm(type, nout, nfail, nrun, nerrs)
ALASVM
Definition alasvm.f:73
subroutine clarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
CLARHS
Definition clarhs.f:208
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine aladhd(iounit, path)
ALADHD
Definition aladhd.f:90
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine cebchvxx(thresh, path)
CEBCHVXX
Definition cebchvxx.f:96
subroutine cerrvx(path, nunit)
CERRVX
Definition cerrvx.f:55
subroutine cgbt01(m, n, kl, ku, a, lda, afac, ldafac, ipiv, work, resid)
CGBT01
Definition cgbt01.f:126
subroutine cgbt02(trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
CGBT02
Definition cgbt02.f:148
subroutine cgbt05(trans, n, kl, ku, nrhs, ab, ldab, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
CGBT05
Definition cgbt05.f:176
subroutine cget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
CGET04
Definition cget04.f:102
subroutine clatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
CLATB4
Definition clatb4.f:121
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine cgbequ(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)
CGBEQU
Definition cgbequ.f:154
subroutine cgbsv(n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
CGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver)
Definition cgbsv.f:162
subroutine cgbsvx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
CGBSVX computes the solution to system of linear equations A * X = B for GB matrices
Definition cgbsvx.f:370
subroutine cgbsvxx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CGBSVXX computes the solution to system of linear equations A * X = B for GB matrices
Definition cgbsvxx.f:563
subroutine cgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
CGBTRF
Definition cgbtrf.f:144
subroutine cgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
CGBTRS
Definition cgbtrs.f:138
real function cla_gbrpvgrw(n, kl, ku, ncols, ab, ldab, afb, ldafb)
CLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clangb(norm, n, kl, ku, ab, ldab, work)
CLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clangb.f:125
real function clange(norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clange.f:115
real function clantb(norm, uplo, diag, n, k, ab, ldab, work)
CLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clantb.f:141
subroutine claqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)
CLAQGB scales a general band matrix, using row and column scaling factors computed by sgbequ.
Definition claqgb.f:160
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sget06(rcond, rcondc)
SGET06
Definition sget06.f:55
Here is the call graph for this function: