LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ claqgb()

subroutine claqgb ( integer m,
integer n,
integer kl,
integer ku,
complex, dimension( ldab, * ) ab,
integer ldab,
real, dimension( * ) r,
real, dimension( * ) c,
real rowcnd,
real colcnd,
real amax,
character equed )

CLAQGB scales a general band matrix, using row and column scaling factors computed by sgbequ.

Download CLAQGB + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CLAQGB equilibrates a general M by N band matrix A with KL
!> subdiagonals and KU superdiagonals using the row and scaling factors
!> in the vectors R and C.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in]KL
!>          KL is INTEGER
!>          The number of subdiagonals within the band of A.  KL >= 0.
!> 
[in]KU
!>          KU is INTEGER
!>          The number of superdiagonals within the band of A.  KU >= 0.
!> 
[in,out]AB
!>          AB is COMPLEX array, dimension (LDAB,N)
!>          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
!>          The j-th column of A is stored in the j-th column of the
!>          array AB as follows:
!>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
!>
!>          On exit, the equilibrated matrix, in the same storage format
!>          as A.  See EQUED for the form of the equilibrated matrix.
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDA >= KL+KU+1.
!> 
[in]R
!>          R is REAL array, dimension (M)
!>          The row scale factors for A.
!> 
[in]C
!>          C is REAL array, dimension (N)
!>          The column scale factors for A.
!> 
[in]ROWCND
!>          ROWCND is REAL
!>          Ratio of the smallest R(i) to the largest R(i).
!> 
[in]COLCND
!>          COLCND is REAL
!>          Ratio of the smallest C(i) to the largest C(i).
!> 
[in]AMAX
!>          AMAX is REAL
!>          Absolute value of largest matrix entry.
!> 
[out]EQUED
!>          EQUED is CHARACTER*1
!>          Specifies the form of equilibration that was done.
!>          = 'N':  No equilibration
!>          = 'R':  Row equilibration, i.e., A has been premultiplied by
!>                  diag(R).
!>          = 'C':  Column equilibration, i.e., A has been postmultiplied
!>                  by diag(C).
!>          = 'B':  Both row and column equilibration, i.e., A has been
!>                  replaced by diag(R) * A * diag(C).
!> 
Internal Parameters:
!>  THRESH is a threshold value used to decide if row or column scaling
!>  should be done based on the ratio of the row or column scaling
!>  factors.  If ROWCND < THRESH, row scaling is done, and if
!>  COLCND < THRESH, column scaling is done.
!>
!>  LARGE and SMALL are threshold values used to decide if row scaling
!>  should be done based on the absolute size of the largest matrix
!>  element.  If AMAX > LARGE or AMAX < SMALL, row scaling is done.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 156 of file claqgb.f.

159*
160* -- LAPACK auxiliary routine --
161* -- LAPACK is a software package provided by Univ. of Tennessee, --
162* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
163*
164* .. Scalar Arguments ..
165 CHARACTER EQUED
166 INTEGER KL, KU, LDAB, M, N
167 REAL AMAX, COLCND, ROWCND
168* ..
169* .. Array Arguments ..
170 REAL C( * ), R( * )
171 COMPLEX AB( LDAB, * )
172* ..
173*
174* =====================================================================
175*
176* .. Parameters ..
177 REAL ONE, THRESH
178 parameter( one = 1.0e+0, thresh = 0.1e+0 )
179* ..
180* .. Local Scalars ..
181 INTEGER I, J
182 REAL CJ, LARGE, SMALL
183* ..
184* .. External Functions ..
185 REAL SLAMCH
186 EXTERNAL slamch
187* ..
188* .. Intrinsic Functions ..
189 INTRINSIC max, min
190* ..
191* .. Executable Statements ..
192*
193* Quick return if possible
194*
195 IF( m.LE.0 .OR. n.LE.0 ) THEN
196 equed = 'N'
197 RETURN
198 END IF
199*
200* Initialize LARGE and SMALL.
201*
202 small = slamch( 'Safe minimum' ) / slamch( 'Precision' )
203 large = one / small
204*
205 IF( rowcnd.GE.thresh .AND. amax.GE.small .AND. amax.LE.large )
206 $ THEN
207*
208* No row scaling
209*
210 IF( colcnd.GE.thresh ) THEN
211*
212* No column scaling
213*
214 equed = 'N'
215 ELSE
216*
217* Column scaling
218*
219 DO 20 j = 1, n
220 cj = c( j )
221 DO 10 i = max( 1, j-ku ), min( m, j+kl )
222 ab( ku+1+i-j, j ) = cj*ab( ku+1+i-j, j )
223 10 CONTINUE
224 20 CONTINUE
225 equed = 'C'
226 END IF
227 ELSE IF( colcnd.GE.thresh ) THEN
228*
229* Row scaling, no column scaling
230*
231 DO 40 j = 1, n
232 DO 30 i = max( 1, j-ku ), min( m, j+kl )
233 ab( ku+1+i-j, j ) = r( i )*ab( ku+1+i-j, j )
234 30 CONTINUE
235 40 CONTINUE
236 equed = 'R'
237 ELSE
238*
239* Row and column scaling
240*
241 DO 60 j = 1, n
242 cj = c( j )
243 DO 50 i = max( 1, j-ku ), min( m, j+kl )
244 ab( ku+1+i-j, j ) = cj*r( i )*ab( ku+1+i-j, j )
245 50 CONTINUE
246 60 CONTINUE
247 equed = 'B'
248 END IF
249*
250 RETURN
251*
252* End of CLAQGB
253*
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
Here is the caller graph for this function: