LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ clatb4()

subroutine clatb4 ( character*3 path,
integer imat,
integer m,
integer n,
character type,
integer kl,
integer ku,
real anorm,
integer mode,
real cndnum,
character dist )

CLATB4

Purpose:
!>
!> CLATB4 sets parameters for the matrix generator based on the type of
!> matrix to be generated.
!> 
Parameters
[in]PATH
!>          PATH is CHARACTER*3
!>          The LAPACK path name.
!> 
[in]IMAT
!>          IMAT is INTEGER
!>          An integer key describing which matrix to generate for this
!>          path.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows in the matrix to be generated.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns in the matrix to be generated.
!> 
[out]TYPE
!>          TYPE is CHARACTER*1
!>          The type of the matrix to be generated:
!>          = 'S':  symmetric matrix
!>          = 'H':  Hermitian matrix
!>          = 'P':  Hermitian positive (semi)definite matrix
!>          = 'N':  nonsymmetric matrix
!> 
[out]KL
!>          KL is INTEGER
!>          The lower band width of the matrix to be generated.
!> 
[out]KU
!>          KU is INTEGER
!>          The upper band width of the matrix to be generated.
!> 
[out]ANORM
!>          ANORM is REAL
!>          The desired norm of the matrix to be generated.  The diagonal
!>          matrix of singular values or eigenvalues is scaled by this
!>          value.
!> 
[out]MODE
!>          MODE is INTEGER
!>          A key indicating how to choose the vector of eigenvalues.
!> 
[out]CNDNUM
!>          CNDNUM is REAL
!>          The desired condition number.
!> 
[out]DIST
!>          DIST is CHARACTER*1
!>          The type of distribution to be used by the random number
!>          generator.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 119 of file clatb4.f.

121*
122* -- LAPACK test routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 CHARACTER DIST, TYPE
128 CHARACTER*3 PATH
129 INTEGER IMAT, KL, KU, M, MODE, N
130 REAL ANORM, CNDNUM
131* ..
132*
133* =====================================================================
134*
135* .. Parameters ..
136 REAL SHRINK, TENTH
137 parameter( shrink = 0.25e0, tenth = 0.1e+0 )
138 REAL ONE
139 parameter( one = 1.0e+0 )
140 REAL TWO
141 parameter( two = 2.0e+0 )
142* ..
143* .. Local Scalars ..
144 LOGICAL FIRST
145 CHARACTER*2 C2
146 INTEGER MAT
147 REAL BADC1, BADC2, EPS, LARGE, SMALL
148* ..
149* .. External Functions ..
150 LOGICAL LSAMEN
151 REAL SLAMCH
152 EXTERNAL lsamen, slamch
153* ..
154* .. Intrinsic Functions ..
155 INTRINSIC abs, max, sqrt
156* ..
157* .. Save statement ..
158 SAVE eps, small, large, badc1, badc2, first
159* ..
160* .. Data statements ..
161 DATA first / .true. /
162* ..
163* .. Executable Statements ..
164*
165* Set some constants for use in the subroutine.
166*
167 IF( first ) THEN
168 first = .false.
169 eps = slamch( 'Precision' )
170 badc2 = tenth / eps
171 badc1 = sqrt( badc2 )
172 small = slamch( 'Safe minimum' )
173 large = one / small
174 small = shrink*( small / eps )
175 large = one / small
176 END IF
177*
178 c2 = path( 2: 3 )
179*
180* Set some parameters we don't plan to change.
181*
182 dist = 'S'
183 mode = 3
184*
185* xQR, xLQ, xQL, xRQ: Set parameters to generate a general
186* M x N matrix.
187*
188 IF( lsamen( 2, c2, 'QR' ) .OR. lsamen( 2, c2, 'LQ' ) .OR.
189 $ lsamen( 2, c2, 'QL' ) .OR. lsamen( 2, c2, 'RQ' ) ) THEN
190*
191* Set TYPE, the type of matrix to be generated.
192*
193 TYPE = 'N'
194*
195* Set the lower and upper bandwidths.
196*
197 IF( imat.EQ.1 ) THEN
198 kl = 0
199 ku = 0
200 ELSE IF( imat.EQ.2 ) THEN
201 kl = 0
202 ku = max( n-1, 0 )
203 ELSE IF( imat.EQ.3 ) THEN
204 kl = max( m-1, 0 )
205 ku = 0
206 ELSE
207 kl = max( m-1, 0 )
208 ku = max( n-1, 0 )
209 END IF
210*
211* Set the condition number and norm.
212*
213 IF( imat.EQ.5 ) THEN
214 cndnum = badc1
215 ELSE IF( imat.EQ.6 ) THEN
216 cndnum = badc2
217 ELSE
218 cndnum = two
219 END IF
220*
221 IF( imat.EQ.7 ) THEN
222 anorm = small
223 ELSE IF( imat.EQ.8 ) THEN
224 anorm = large
225 ELSE
226 anorm = one
227 END IF
228*
229 ELSE IF( lsamen( 2, c2, 'QK' ) ) THEN
230*
231* xQK: truncated QR with pivoting.
232* Set parameters to generate a general
233* M x N matrix.
234*
235* Set TYPE, the type of matrix to be generated. 'N' is nonsymmetric.
236*
237 TYPE = 'N'
238*
239* Set DIST, the type of distribution for the random
240* number generator. 'S' is
241*
242 dist = 'S'
243*
244* Set the lower and upper bandwidths.
245*
246 IF( imat.EQ.2 ) THEN
247*
248* 2. Random, Diagonal, CNDNUM = 2
249*
250 kl = 0
251 ku = 0
252 cndnum = two
253 anorm = one
254 mode = 3
255 ELSE IF( imat.EQ.3 ) THEN
256*
257* 3. Random, Upper triangular, CNDNUM = 2
258*
259 kl = 0
260 ku = max( n-1, 0 )
261 cndnum = two
262 anorm = one
263 mode = 3
264 ELSE IF( imat.EQ.4 ) THEN
265*
266* 4. Random, Lower triangular, CNDNUM = 2
267*
268 kl = max( m-1, 0 )
269 ku = 0
270 cndnum = two
271 anorm = one
272 mode = 3
273 ELSE
274*
275* 5.-19. Rectangular matrix
276*
277 kl = max( m-1, 0 )
278 ku = max( n-1, 0 )
279*
280 IF( imat.GE.5 .AND. imat.LE.14 ) THEN
281*
282* 5.-14. Random, CNDNUM = 2.
283*
284 cndnum = two
285 anorm = one
286 mode = 3
287*
288 ELSE IF( imat.EQ.15 ) THEN
289*
290* 15. Random, CNDNUM = sqrt(0.1/EPS)
291*
292 cndnum = badc1
293 anorm = one
294 mode = 3
295*
296 ELSE IF( imat.EQ.16 ) THEN
297*
298* 16. Random, CNDNUM = 0.1/EPS
299*
300 cndnum = badc2
301 anorm = one
302 mode = 3
303*
304 ELSE IF( imat.EQ.17 ) THEN
305*
306* 17. Random, CNDNUM = 0.1/EPS,
307* one small singular value S(N)=1/CNDNUM
308*
309 cndnum = badc2
310 anorm = one
311 mode = 2
312*
313 ELSE IF( imat.EQ.18 ) THEN
314*
315* 18. Random, scaled near underflow
316*
317 cndnum = two
318 anorm = small
319 mode = 3
320*
321 ELSE IF( imat.EQ.19 ) THEN
322*
323* 19. Random, scaled near overflow
324*
325 cndnum = two
326 anorm = large
327 mode = 3
328*
329 END IF
330*
331 END IF
332*
333 ELSE IF( lsamen( 2, c2, 'GE' ) ) THEN
334*
335* xGE: Set parameters to generate a general M x N matrix.
336*
337* Set TYPE, the type of matrix to be generated.
338*
339 TYPE = 'N'
340*
341* Set the lower and upper bandwidths.
342*
343 IF( imat.EQ.1 ) THEN
344 kl = 0
345 ku = 0
346 ELSE IF( imat.EQ.2 ) THEN
347 kl = 0
348 ku = max( n-1, 0 )
349 ELSE IF( imat.EQ.3 ) THEN
350 kl = max( m-1, 0 )
351 ku = 0
352 ELSE
353 kl = max( m-1, 0 )
354 ku = max( n-1, 0 )
355 END IF
356*
357* Set the condition number and norm.
358*
359 IF( imat.EQ.8 ) THEN
360 cndnum = badc1
361 ELSE IF( imat.EQ.9 ) THEN
362 cndnum = badc2
363 ELSE
364 cndnum = two
365 END IF
366*
367 IF( imat.EQ.10 ) THEN
368 anorm = small
369 ELSE IF( imat.EQ.11 ) THEN
370 anorm = large
371 ELSE
372 anorm = one
373 END IF
374*
375 ELSE IF( lsamen( 2, c2, 'GB' ) ) THEN
376*
377* xGB: Set parameters to generate a general banded matrix.
378*
379* Set TYPE, the type of matrix to be generated.
380*
381 TYPE = 'N'
382*
383* Set the condition number and norm.
384*
385 IF( imat.EQ.5 ) THEN
386 cndnum = badc1
387 ELSE IF( imat.EQ.6 ) THEN
388 cndnum = tenth*badc2
389 ELSE
390 cndnum = two
391 END IF
392*
393 IF( imat.EQ.7 ) THEN
394 anorm = small
395 ELSE IF( imat.EQ.8 ) THEN
396 anorm = large
397 ELSE
398 anorm = one
399 END IF
400*
401 ELSE IF( lsamen( 2, c2, 'GT' ) ) THEN
402*
403* xGT: Set parameters to generate a general tridiagonal matrix.
404*
405* Set TYPE, the type of matrix to be generated.
406*
407 TYPE = 'N'
408*
409* Set the lower and upper bandwidths.
410*
411 IF( imat.EQ.1 ) THEN
412 kl = 0
413 ELSE
414 kl = 1
415 END IF
416 ku = kl
417*
418* Set the condition number and norm.
419*
420 IF( imat.EQ.3 ) THEN
421 cndnum = badc1
422 ELSE IF( imat.EQ.4 ) THEN
423 cndnum = badc2
424 ELSE
425 cndnum = two
426 END IF
427*
428 IF( imat.EQ.5 .OR. imat.EQ.11 ) THEN
429 anorm = small
430 ELSE IF( imat.EQ.6 .OR. imat.EQ.12 ) THEN
431 anorm = large
432 ELSE
433 anorm = one
434 END IF
435*
436 ELSE IF( lsamen( 2, c2, 'PO' ) .OR. lsamen( 2, c2, 'PP' ) ) THEN
437*
438* xPO, xPP: Set parameters to generate a
439* symmetric or Hermitian positive definite matrix.
440*
441* Set TYPE, the type of matrix to be generated.
442*
443 TYPE = c2( 1: 1 )
444*
445* Set the lower and upper bandwidths.
446*
447 IF( imat.EQ.1 ) THEN
448 kl = 0
449 ELSE
450 kl = max( n-1, 0 )
451 END IF
452 ku = kl
453*
454* Set the condition number and norm.
455*
456 IF( imat.EQ.6 ) THEN
457 cndnum = badc1
458 ELSE IF( imat.EQ.7 ) THEN
459 cndnum = badc2
460 ELSE
461 cndnum = two
462 END IF
463*
464 IF( imat.EQ.8 ) THEN
465 anorm = small
466 ELSE IF( imat.EQ.9 ) THEN
467 anorm = large
468 ELSE
469 anorm = one
470 END IF
471*
472 ELSE IF( lsamen( 2, c2, 'HE' ) .OR. lsamen( 2, c2, 'HP' ) .OR.
473 $ lsamen( 2, c2, 'SY' ) .OR. lsamen( 2, c2, 'SP' ) ) THEN
474*
475* xHE, xHP, xSY, xSP: Set parameters to generate a
476* symmetric or Hermitian matrix.
477*
478* Set TYPE, the type of matrix to be generated.
479*
480 TYPE = c2( 1: 1 )
481*
482* Set the lower and upper bandwidths.
483*
484 IF( imat.EQ.1 ) THEN
485 kl = 0
486 ELSE
487 kl = max( n-1, 0 )
488 END IF
489 ku = kl
490*
491* Set the condition number and norm.
492*
493 IF( imat.EQ.7 ) THEN
494 cndnum = badc1
495 ELSE IF( imat.EQ.8 ) THEN
496 cndnum = badc2
497 ELSE
498 cndnum = two
499 END IF
500*
501 IF( imat.EQ.9 ) THEN
502 anorm = small
503 ELSE IF( imat.EQ.10 ) THEN
504 anorm = large
505 ELSE
506 anorm = one
507 END IF
508*
509 ELSE IF( lsamen( 2, c2, 'PB' ) ) THEN
510*
511* xPB: Set parameters to generate a symmetric band matrix.
512*
513* Set TYPE, the type of matrix to be generated.
514*
515 TYPE = 'P'
516*
517* Set the norm and condition number.
518*
519 IF( imat.EQ.5 ) THEN
520 cndnum = badc1
521 ELSE IF( imat.EQ.6 ) THEN
522 cndnum = badc2
523 ELSE
524 cndnum = two
525 END IF
526*
527 IF( imat.EQ.7 ) THEN
528 anorm = small
529 ELSE IF( imat.EQ.8 ) THEN
530 anorm = large
531 ELSE
532 anorm = one
533 END IF
534*
535 ELSE IF( lsamen( 2, c2, 'PT' ) ) THEN
536*
537* xPT: Set parameters to generate a symmetric positive definite
538* tridiagonal matrix.
539*
540 TYPE = 'P'
541 IF( imat.EQ.1 ) THEN
542 kl = 0
543 ELSE
544 kl = 1
545 END IF
546 ku = kl
547*
548* Set the condition number and norm.
549*
550 IF( imat.EQ.3 ) THEN
551 cndnum = badc1
552 ELSE IF( imat.EQ.4 ) THEN
553 cndnum = badc2
554 ELSE
555 cndnum = two
556 END IF
557*
558 IF( imat.EQ.5 .OR. imat.EQ.11 ) THEN
559 anorm = small
560 ELSE IF( imat.EQ.6 .OR. imat.EQ.12 ) THEN
561 anorm = large
562 ELSE
563 anorm = one
564 END IF
565*
566 ELSE IF( lsamen( 2, c2, 'TR' ) .OR. lsamen( 2, c2, 'TP' ) ) THEN
567*
568* xTR, xTP: Set parameters to generate a triangular matrix
569*
570* Set TYPE, the type of matrix to be generated.
571*
572 TYPE = 'N'
573*
574* Set the lower and upper bandwidths.
575*
576 mat = abs( imat )
577 IF( mat.EQ.1 .OR. mat.EQ.7 ) THEN
578 kl = 0
579 ku = 0
580 ELSE IF( imat.LT.0 ) THEN
581 kl = max( n-1, 0 )
582 ku = 0
583 ELSE
584 kl = 0
585 ku = max( n-1, 0 )
586 END IF
587*
588* Set the condition number and norm.
589*
590 IF( mat.EQ.3 .OR. mat.EQ.9 ) THEN
591 cndnum = badc1
592 ELSE IF( mat.EQ.4 .OR. mat.EQ.10 ) THEN
593 cndnum = badc2
594 ELSE
595 cndnum = two
596 END IF
597*
598 IF( mat.EQ.5 ) THEN
599 anorm = small
600 ELSE IF( mat.EQ.6 ) THEN
601 anorm = large
602 ELSE
603 anorm = one
604 END IF
605*
606 ELSE IF( lsamen( 2, c2, 'TB' ) ) THEN
607*
608* xTB: Set parameters to generate a triangular band matrix.
609*
610* Set TYPE, the type of matrix to be generated.
611*
612 TYPE = 'N'
613*
614* Set the norm and condition number.
615*
616 mat = abs( imat )
617 IF( mat.EQ.2 .OR. mat.EQ.8 ) THEN
618 cndnum = badc1
619 ELSE IF( mat.EQ.3 .OR. mat.EQ.9 ) THEN
620 cndnum = badc2
621 ELSE
622 cndnum = two
623 END IF
624*
625 IF( mat.EQ.4 ) THEN
626 anorm = small
627 ELSE IF( mat.EQ.5 ) THEN
628 anorm = large
629 ELSE
630 anorm = one
631 END IF
632 END IF
633 IF( n.LE.1 )
634 $ cndnum = one
635*
636 RETURN
637*
638* End of CLATB4
639*
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsamen(n, ca, cb)
LSAMEN
Definition lsamen.f:72
Here is the caller graph for this function: