558 SUBROUTINE cgbsvxx( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
559 $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
560 $ RCOND, RPVGRW, BERR, N_ERR_BNDS,
561 $ ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
562 $ WORK, RWORK, INFO )
569 CHARACTER EQUED, FACT, TRANS
570 INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
576 COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
577 $ X( LDX , * ),WORK( * )
578 REAL R( * ), C( * ), PARAMS( * ), BERR( * ),
579 $ err_bnds_norm( nrhs, * ),
580 $ err_bnds_comp( nrhs, * ), rwork( * )
587 PARAMETER ( ZERO = 0.0e+0, one = 1.0e+0 )
588 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
589 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
590 INTEGER CMP_ERR_I, PIV_GROWTH_I
591 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
593 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
594 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
598 LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
599 INTEGER INFEQU, I, J, KL, KU
600 REAL AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
606 REAL SLAMCH, CLA_GBRPVGRW
618 nofact = lsame( fact,
'N' )
619 equil = lsame( fact,
'E' )
620 notran = lsame( trans,
'N' )
621 smlnum = slamch(
'Safe minimum' )
622 bignum = one / smlnum
623 IF( nofact .OR. equil )
THEN
628 rowequ = lsame( equed,
'R' ) .OR. lsame( equed,
'B' )
629 colequ = lsame( equed,
'C' ) .OR. lsame( equed,
'B' )
640 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
641 $ lsame( fact,
'F' ) )
THEN
643 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans,
'T' ) .AND. .NOT.
644 $ lsame( trans,
'C' ) )
THEN
646 ELSE IF( n.LT.0 )
THEN
648 ELSE IF( kl.LT.0 )
THEN
650 ELSE IF( ku.LT.0 )
THEN
652 ELSE IF( nrhs.LT.0 )
THEN
654 ELSE IF( ldab.LT.kl+ku+1 )
THEN
656 ELSE IF( ldafb.LT.2*kl+ku+1 )
THEN
658 ELSE IF( lsame( fact,
'F' ) .AND. .NOT.
659 $ ( rowequ .OR. colequ .OR. lsame( equed,
'N' ) ) )
THEN
666 rcmin = min( rcmin, r( j ) )
667 rcmax = max( rcmax, r( j ) )
669 IF( rcmin.LE.zero )
THEN
671 ELSE IF( n.GT.0 )
THEN
672 rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
677 IF( colequ .AND. info.EQ.0 )
THEN
681 rcmin = min( rcmin, c( j ) )
682 rcmax = max( rcmax, c( j ) )
684 IF( rcmin.LE.zero )
THEN
686 ELSE IF( n.GT.0 )
THEN
687 colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
693 IF( ldb.LT.max( 1, n ) )
THEN
695 ELSE IF( ldx.LT.max( 1, n ) )
THEN
702 CALL xerbla(
'CGBSVXX', -info )
710 CALL cgbequb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
712 IF( infequ.EQ.0 )
THEN
716 CALL claqgb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
718 rowequ = lsame( equed,
'R' ) .OR. lsame( equed,
'B' )
719 colequ = lsame( equed,
'C' ) .OR. lsame( equed,
'B' )
724 IF ( .NOT.rowequ )
THEN
729 IF ( .NOT.colequ )
THEN
739 IF( rowequ )
CALL clascl2( n, nrhs, r, b, ldb )
741 IF( colequ )
CALL clascl2( n, nrhs, c, b, ldb )
744 IF( nofact .OR. equil )
THEN
749 DO 30, i = kl+1, 2*kl+ku+1
750 afb( i, j ) = ab( i-kl, j )
753 CALL cgbtrf( n, n, kl, ku, afb, ldafb, ipiv, info )
763 rpvgrw = cla_gbrpvgrw( n, kl, ku, info, ab, ldab, afb,
771 rpvgrw = cla_gbrpvgrw( n, kl, ku, n, ab, ldab, afb, ldafb )
775 CALL clacpy(
'Full', n, nrhs, b, ldb, x, ldx )
776 CALL cgbtrs( trans, n, kl, ku, nrhs, afb, ldafb, ipiv, x, ldx,
782 CALL cgbrfsx( trans, equed, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
783 $ ipiv, r, c, b, ldb, x, ldx, rcond, berr,
784 $ n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params,
785 $ work, rwork, info )
790 IF ( colequ .AND. notran )
THEN
791 CALL clascl2( n, nrhs, c, x, ldx )
792 ELSE IF ( rowequ .AND. .NOT.notran )
THEN
793 CALL clascl2( n, nrhs, r, x, ldx )
subroutine xerbla(srname, info)
subroutine cgbequb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)
CGBEQUB
subroutine cgbrfsx(trans, equed, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, r, c, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CGBRFSX
subroutine cgbsvxx(fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CGBSVXX computes the solution to system of linear equations A * X = B for GB matrices
subroutine cgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
CGBTRF
subroutine cgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
CGBTRS
real function cla_gbrpvgrw(n, kl, ku, ncols, ab, ldab, afb, ldafb)
CLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix.
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
real function slamch(cmach)
SLAMCH
subroutine claqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)
CLAQGB scales a general band matrix, using row and column scaling factors computed by sgbequ.
subroutine clascl2(m, n, d, x, ldx)
CLASCL2 performs diagonal scaling on a matrix.
logical function lsame(ca, cb)
LSAME