LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
claqz1.f
Go to the documentation of this file.
1*> \brief \b CLAQZ1
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CLAQZ1 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/CLAQZ1.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/CLAQZ1.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/CLAQZ1.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CLAQZ1( ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA, B,
20* $ LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ )
21* IMPLICIT NONE
22*
23* Arguments
24* LOGICAL, INTENT( IN ) :: ILQ, ILZ
25* INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
26* $ NQ, NZ, QSTART, ZSTART, IHI
27* COMPLEX :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> CLAQZ1 chases a 1x1 shift bulge in a matrix pencil down a single position
37*> \endverbatim
38*
39*
40* Arguments:
41* ==========
42*
43*>
44*> \param[in] ILQ
45*> \verbatim
46*> ILQ is LOGICAL
47*> Determines whether or not to update the matrix Q
48*> \endverbatim
49*>
50*> \param[in] ILZ
51*> \verbatim
52*> ILZ is LOGICAL
53*> Determines whether or not to update the matrix Z
54*> \endverbatim
55*>
56*> \param[in] K
57*> \verbatim
58*> K is INTEGER
59*> Index indicating the position of the bulge.
60*> On entry, the bulge is located in
61*> (A(k+1,k),B(k+1,k)).
62*> On exit, the bulge is located in
63*> (A(k+2,k+1),B(k+2,k+1)).
64*> \endverbatim
65*>
66*> \param[in] ISTARTM
67*> \verbatim
68*> ISTARTM is INTEGER
69*> \endverbatim
70*>
71*> \param[in] ISTOPM
72*> \verbatim
73*> ISTOPM is INTEGER
74*> Updates to (A,B) are restricted to
75*> (istartm:k+2,k:istopm). It is assumed
76*> without checking that istartm <= k+1 and
77*> k+2 <= istopm
78*> \endverbatim
79*>
80*> \param[in] IHI
81*> \verbatim
82*> IHI is INTEGER
83*> \endverbatim
84*>
85*> \param[inout] A
86*> \verbatim
87*> A is COMPLEX array, dimension (LDA,N)
88*> \endverbatim
89*>
90*> \param[in] LDA
91*> \verbatim
92*> LDA is INTEGER
93*> The leading dimension of A as declared in
94*> the calling procedure.
95*> \endverbatim
96*
97*> \param[inout] B
98*> \verbatim
99*> B is COMPLEX array, dimension (LDB,N)
100*> \endverbatim
101*>
102*> \param[in] LDB
103*> \verbatim
104*> LDB is INTEGER
105*> The leading dimension of B as declared in
106*> the calling procedure.
107*> \endverbatim
108*>
109*> \param[in] NQ
110*> \verbatim
111*> NQ is INTEGER
112*> The order of the matrix Q
113*> \endverbatim
114*>
115*> \param[in] QSTART
116*> \verbatim
117*> QSTART is INTEGER
118*> Start index of the matrix Q. Rotations are applied
119*> To columns k+2-qStart:k+3-qStart of Q.
120*> \endverbatim
121*
122*> \param[inout] Q
123*> \verbatim
124*> Q is COMPLEX array, dimension (LDQ,NQ)
125*> \endverbatim
126*>
127*> \param[in] LDQ
128*> \verbatim
129*> LDQ is INTEGER
130*> The leading dimension of Q as declared in
131*> the calling procedure.
132*> \endverbatim
133*>
134*> \param[in] NZ
135*> \verbatim
136*> NZ is INTEGER
137*> The order of the matrix Z
138*> \endverbatim
139*>
140*> \param[in] ZSTART
141*> \verbatim
142*> ZSTART is INTEGER
143*> Start index of the matrix Z. Rotations are applied
144*> To columns k+1-qStart:k+2-qStart of Z.
145*> \endverbatim
146*
147*> \param[inout] Z
148*> \verbatim
149*> Z is COMPLEX array, dimension (LDZ,NZ)
150*> \endverbatim
151*>
152*> \param[in] LDZ
153*> \verbatim
154*> LDZ is INTEGER
155*> The leading dimension of Q as declared in
156*> the calling procedure.
157*> \endverbatim
158*
159* Authors:
160* ========
161*
162*> \author Thijs Steel, KU Leuven
163*
164*> \date May 2020
165*
166*> \ingroup laqz1
167*>
168* =====================================================================
169 SUBROUTINE claqz1( ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA,
170 $ B,
171 $ LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ )
172 IMPLICIT NONE
173*
174* Arguments
175 LOGICAL, INTENT( IN ) :: ILQ, ILZ
176 INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
177 $ nq, nz, qstart, zstart, ihi
178 COMPLEX :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
179*
180* Parameters
181 COMPLEX CZERO, CONE
182 PARAMETER ( CZERO = ( 0.0, 0.0 ), cone = ( 1.0, 0.0 ) )
183 REAL :: ZERO, ONE, HALF
184 parameter( zero = 0.0, one = 1.0, half = 0.5 )
185*
186* Local variables
187 REAL :: C
188 COMPLEX :: S, TEMP
189*
190* External Functions
191 EXTERNAL :: clartg, crot
192*
193 IF( k+1 .EQ. ihi ) THEN
194*
195* Shift is located on the edge of the matrix, remove it
196*
197 CALL clartg( b( ihi, ihi ), b( ihi, ihi-1 ), c, s, temp )
198 b( ihi, ihi ) = temp
199 b( ihi, ihi-1 ) = czero
200 CALL crot( ihi-istartm, b( istartm, ihi ), 1, b( istartm,
201 $ ihi-1 ), 1, c, s )
202 CALL crot( ihi-istartm+1, a( istartm, ihi ), 1, a( istartm,
203 $ ihi-1 ), 1, c, s )
204 IF ( ilz ) THEN
205 CALL crot( nz, z( 1, ihi-zstart+1 ), 1, z( 1,
206 $ ihi-1-zstart+
207 $ 1 ), 1, c, s )
208 END IF
209*
210 ELSE
211*
212* Normal operation, move bulge down
213*
214*
215* Apply transformation from the right
216*
217 CALL clartg( b( k+1, k+1 ), b( k+1, k ), c, s, temp )
218 b( k+1, k+1 ) = temp
219 b( k+1, k ) = czero
220 CALL crot( k+2-istartm+1, a( istartm, k+1 ), 1, a( istartm,
221 $ k ), 1, c, s )
222 CALL crot( k-istartm+1, b( istartm, k+1 ), 1, b( istartm,
223 $ k ),
224 $ 1, c, s )
225 IF ( ilz ) THEN
226 CALL crot( nz, z( 1, k+1-zstart+1 ), 1, z( 1,
227 $ k-zstart+1 ),
228 $ 1, c, s )
229 END IF
230*
231* Apply transformation from the left
232*
233 CALL clartg( a( k+1, k ), a( k+2, k ), c, s, temp )
234 a( k+1, k ) = temp
235 a( k+2, k ) = czero
236 CALL crot( istopm-k, a( k+1, k+1 ), lda, a( k+2, k+1 ), lda,
237 $ c,
238 $ s )
239 CALL crot( istopm-k, b( k+1, k+1 ), ldb, b( k+2, k+1 ), ldb,
240 $ c,
241 $ s )
242 IF ( ilq ) THEN
243 CALL crot( nq, q( 1, k+1-qstart+1 ), 1, q( 1, k+2-qstart+
244 $ 1 ), 1, c, conjg( s ) )
245 END IF
246*
247 END IF
248*
249* End of CLAQZ1
250*
251 END SUBROUTINE
subroutine claqz1(ilq, ilz, k, istartm, istopm, ihi, a, lda, b, ldb, nq, qstart, q, ldq, nz, zstart, z, ldz)
CLAQZ1
Definition claqz1.f:172
subroutine clartg(f, g, c, s, r)
CLARTG generates a plane rotation with real cosine and complex sine.
Definition clartg.f90:116
subroutine crot(n, cx, incx, cy, incy, c, s)
CROT applies a plane rotation with real cosine and complex sine to a pair of complex vectors.
Definition crot.f:101