LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
claqz1.f
Go to the documentation of this file.
1*> \brief \b CLAQZ1
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLAQZ1 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/CLAQZ1.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/CLAQZ1.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/CLAQZ1.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE CLAQZ1( ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA, B,
22* $ LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ )
23* IMPLICIT NONE
24*
25* Arguments
26* LOGICAL, INTENT( IN ) :: ILQ, ILZ
27* INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
28* $ NQ, NZ, QSTART, ZSTART, IHI
29* COMPLEX :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> CLAQZ1 chases a 1x1 shift bulge in a matrix pencil down a single position
39*> \endverbatim
40*
41*
42* Arguments:
43* ==========
44*
45*>
46*> \param[in] ILQ
47*> \verbatim
48*> ILQ is LOGICAL
49*> Determines whether or not to update the matrix Q
50*> \endverbatim
51*>
52*> \param[in] ILZ
53*> \verbatim
54*> ILZ is LOGICAL
55*> Determines whether or not to update the matrix Z
56*> \endverbatim
57*>
58*> \param[in] K
59*> \verbatim
60*> K is INTEGER
61*> Index indicating the position of the bulge.
62*> On entry, the bulge is located in
63*> (A(k+1,k),B(k+1,k)).
64*> On exit, the bulge is located in
65*> (A(k+2,k+1),B(k+2,k+1)).
66*> \endverbatim
67*>
68*> \param[in] ISTARTM
69*> \verbatim
70*> ISTARTM is INTEGER
71*> \endverbatim
72*>
73*> \param[in] ISTOPM
74*> \verbatim
75*> ISTOPM is INTEGER
76*> Updates to (A,B) are restricted to
77*> (istartm:k+2,k:istopm). It is assumed
78*> without checking that istartm <= k+1 and
79*> k+2 <= istopm
80*> \endverbatim
81*>
82*> \param[in] IHI
83*> \verbatim
84*> IHI is INTEGER
85*> \endverbatim
86*>
87*> \param[inout] A
88*> \verbatim
89*> A is COMPLEX array, dimension (LDA,N)
90*> \endverbatim
91*>
92*> \param[in] LDA
93*> \verbatim
94*> LDA is INTEGER
95*> The leading dimension of A as declared in
96*> the calling procedure.
97*> \endverbatim
98*
99*> \param[inout] B
100*> \verbatim
101*> B is COMPLEX array, dimension (LDB,N)
102*> \endverbatim
103*>
104*> \param[in] LDB
105*> \verbatim
106*> LDB is INTEGER
107*> The leading dimension of B as declared in
108*> the calling procedure.
109*> \endverbatim
110*>
111*> \param[in] NQ
112*> \verbatim
113*> NQ is INTEGER
114*> The order of the matrix Q
115*> \endverbatim
116*>
117*> \param[in] QSTART
118*> \verbatim
119*> QSTART is INTEGER
120*> Start index of the matrix Q. Rotations are applied
121*> To columns k+2-qStart:k+3-qStart of Q.
122*> \endverbatim
123*
124*> \param[inout] Q
125*> \verbatim
126*> Q is COMPLEX array, dimension (LDQ,NQ)
127*> \endverbatim
128*>
129*> \param[in] LDQ
130*> \verbatim
131*> LDQ is INTEGER
132*> The leading dimension of Q as declared in
133*> the calling procedure.
134*> \endverbatim
135*>
136*> \param[in] NZ
137*> \verbatim
138*> NZ is INTEGER
139*> The order of the matrix Z
140*> \endverbatim
141*>
142*> \param[in] ZSTART
143*> \verbatim
144*> ZSTART is INTEGER
145*> Start index of the matrix Z. Rotations are applied
146*> To columns k+1-qStart:k+2-qStart of Z.
147*> \endverbatim
148*
149*> \param[inout] Z
150*> \verbatim
151*> Z is COMPLEX array, dimension (LDZ,NZ)
152*> \endverbatim
153*>
154*> \param[in] LDZ
155*> \verbatim
156*> LDZ is INTEGER
157*> The leading dimension of Q as declared in
158*> the calling procedure.
159*> \endverbatim
160*
161* Authors:
162* ========
163*
164*> \author Thijs Steel, KU Leuven
165*
166*> \date May 2020
167*
168*> \ingroup laqz1
169*>
170* =====================================================================
171 SUBROUTINE claqz1( ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA, B,
172 $ LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ )
173 IMPLICIT NONE
174*
175* Arguments
176 LOGICAL, INTENT( IN ) :: ILQ, ILZ
177 INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
178 $ nq, nz, qstart, zstart, ihi
179 COMPLEX :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
180*
181* Parameters
182 COMPLEX CZERO, CONE
183 parameter( czero = ( 0.0, 0.0 ), cone = ( 1.0, 0.0 ) )
184 REAL :: ZERO, ONE, HALF
185 parameter( zero = 0.0, one = 1.0, half = 0.5 )
186*
187* Local variables
188 REAL :: C
189 COMPLEX :: S, TEMP
190*
191* External Functions
192 EXTERNAL :: clartg, crot
193*
194 IF( k+1 .EQ. ihi ) THEN
195*
196* Shift is located on the edge of the matrix, remove it
197*
198 CALL clartg( b( ihi, ihi ), b( ihi, ihi-1 ), c, s, temp )
199 b( ihi, ihi ) = temp
200 b( ihi, ihi-1 ) = czero
201 CALL crot( ihi-istartm, b( istartm, ihi ), 1, b( istartm,
202 $ ihi-1 ), 1, c, s )
203 CALL crot( ihi-istartm+1, a( istartm, ihi ), 1, a( istartm,
204 $ ihi-1 ), 1, c, s )
205 IF ( ilz ) THEN
206 CALL crot( nz, z( 1, ihi-zstart+1 ), 1, z( 1, ihi-1-zstart+
207 $ 1 ), 1, c, s )
208 END IF
209*
210 ELSE
211*
212* Normal operation, move bulge down
213*
214*
215* Apply transformation from the right
216*
217 CALL clartg( b( k+1, k+1 ), b( k+1, k ), c, s, temp )
218 b( k+1, k+1 ) = temp
219 b( k+1, k ) = czero
220 CALL crot( k+2-istartm+1, a( istartm, k+1 ), 1, a( istartm,
221 $ k ), 1, c, s )
222 CALL crot( k-istartm+1, b( istartm, k+1 ), 1, b( istartm, k ),
223 $ 1, c, s )
224 IF ( ilz ) THEN
225 CALL crot( nz, z( 1, k+1-zstart+1 ), 1, z( 1, k-zstart+1 ),
226 $ 1, c, s )
227 END IF
228*
229* Apply transformation from the left
230*
231 CALL clartg( a( k+1, k ), a( k+2, k ), c, s, temp )
232 a( k+1, k ) = temp
233 a( k+2, k ) = czero
234 CALL crot( istopm-k, a( k+1, k+1 ), lda, a( k+2, k+1 ), lda, c,
235 $ s )
236 CALL crot( istopm-k, b( k+1, k+1 ), ldb, b( k+2, k+1 ), ldb, c,
237 $ s )
238 IF ( ilq ) THEN
239 CALL crot( nq, q( 1, k+1-qstart+1 ), 1, q( 1, k+2-qstart+
240 $ 1 ), 1, c, conjg( s ) )
241 END IF
242*
243 END IF
244*
245* End of CLAQZ1
246*
247 END SUBROUTINE
subroutine claqz1(ilq, ilz, k, istartm, istopm, ihi, a, lda, b, ldb, nq, qstart, q, ldq, nz, zstart, z, ldz)
CLAQZ1
Definition claqz1.f:173
subroutine clartg(f, g, c, s, r)
CLARTG generates a plane rotation with real cosine and complex sine.
Definition clartg.f90:116
subroutine crot(n, cx, incx, cy, incy, c, s)
CROT applies a plane rotation with real cosine and complex sine to a pair of complex vectors.
Definition crot.f:103