LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ crot()

subroutine crot ( integer  n,
complex, dimension( * )  cx,
integer  incx,
complex, dimension( * )  cy,
integer  incy,
real  c,
complex  s 
)

CROT applies a plane rotation with real cosine and complex sine to a pair of complex vectors.

Download CROT + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CROT applies a plane rotation, where the cos (C) is real and the
 sin (S) is complex, and the vectors CX and CY are complex.
Parameters
[in]N
          N is INTEGER
          The number of elements in the vectors CX and CY.
[in,out]CX
          CX is COMPLEX array, dimension (N)
          On input, the vector X.
          On output, CX is overwritten with C*X + S*Y.
[in]INCX
          INCX is INTEGER
          The increment between successive values of CX.  INCX <> 0.
[in,out]CY
          CY is COMPLEX array, dimension (N)
          On input, the vector Y.
          On output, CY is overwritten with -CONJG(S)*X + C*Y.
[in]INCY
          INCY is INTEGER
          The increment between successive values of CY.  INCX <> 0.
[in]C
          C is REAL
[in]S
          S is COMPLEX
          C and S define a rotation
             [  C          S  ]
             [ -conjg(S)   C  ]
          where C*C + S*CONJG(S) = 1.0.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 102 of file crot.f.

103*
104* -- LAPACK auxiliary routine --
105* -- LAPACK is a software package provided by Univ. of Tennessee, --
106* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
107*
108* .. Scalar Arguments ..
109 INTEGER INCX, INCY, N
110 REAL C
111 COMPLEX S
112* ..
113* .. Array Arguments ..
114 COMPLEX CX( * ), CY( * )
115* ..
116*
117* =====================================================================
118*
119* .. Local Scalars ..
120 INTEGER I, IX, IY
121 COMPLEX STEMP
122* ..
123* .. Intrinsic Functions ..
124 INTRINSIC conjg
125* ..
126* .. Executable Statements ..
127*
128 IF( n.LE.0 )
129 $ RETURN
130 IF( incx.EQ.1 .AND. incy.EQ.1 )
131 $ GO TO 20
132*
133* Code for unequal increments or equal increments not equal to 1
134*
135 ix = 1
136 iy = 1
137 IF( incx.LT.0 )
138 $ ix = ( -n+1 )*incx + 1
139 IF( incy.LT.0 )
140 $ iy = ( -n+1 )*incy + 1
141 DO 10 i = 1, n
142 stemp = c*cx( ix ) + s*cy( iy )
143 cy( iy ) = c*cy( iy ) - conjg( s )*cx( ix )
144 cx( ix ) = stemp
145 ix = ix + incx
146 iy = iy + incy
147 10 CONTINUE
148 RETURN
149*
150* Code for both increments equal to 1
151*
152 20 CONTINUE
153 DO 30 i = 1, n
154 stemp = c*cx( i ) + s*cy( i )
155 cy( i ) = c*cy( i ) - conjg( s )*cx( i )
156 cx( i ) = stemp
157 30 CONTINUE
158 RETURN
Here is the caller graph for this function: