LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ claqz1()

subroutine claqz1 ( logical, intent(in) ilq,
logical, intent(in) ilz,
integer, intent(in) k,
integer, intent(in) istartm,
integer, intent(in) istopm,
integer, intent(in) ihi,
complex, dimension( lda, * ) a,
integer, intent(in) lda,
complex, dimension( ldb, * ) b,
integer, intent(in) ldb,
integer, intent(in) nq,
integer, intent(in) qstart,
complex, dimension( ldq, * ) q,
integer, intent(in) ldq,
integer, intent(in) nz,
integer, intent(in) zstart,
complex, dimension( ldz, * ) z,
integer, intent(in) ldz )

CLAQZ1

Download CLAQZ1 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>      CLAQZ1 chases a 1x1 shift bulge in a matrix pencil down a single position
!> 
Parameters
[in]ILQ
!>          ILQ is LOGICAL
!>              Determines whether or not to update the matrix Q
!> 
[in]ILZ
!>          ILZ is LOGICAL
!>              Determines whether or not to update the matrix Z
!> 
[in]K
!>          K is INTEGER
!>              Index indicating the position of the bulge.
!>              On entry, the bulge is located in
!>              (A(k+1,k),B(k+1,k)).
!>              On exit, the bulge is located in
!>              (A(k+2,k+1),B(k+2,k+1)).
!> 
[in]ISTARTM
!>          ISTARTM is INTEGER
!> 
[in]ISTOPM
!>          ISTOPM is INTEGER
!>              Updates to (A,B) are restricted to
!>              (istartm:k+2,k:istopm). It is assumed
!>              without checking that istartm <= k+1 and
!>              k+2 <= istopm
!> 
[in]IHI
!>          IHI is INTEGER
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!> 
[in]LDA
!>          LDA is INTEGER
!>              The leading dimension of A as declared in
!>              the calling procedure.
!> 
[in,out]B
!>          B is COMPLEX array, dimension (LDB,N)
!> 
[in]LDB
!>          LDB is INTEGER
!>              The leading dimension of B as declared in
!>              the calling procedure.
!> 
[in]NQ
!>          NQ is INTEGER
!>              The order of the matrix Q
!> 
[in]QSTART
!>          QSTART is INTEGER
!>              Start index of the matrix Q. Rotations are applied
!>              To columns k+2-qStart:k+3-qStart of Q.
!> 
[in,out]Q
!>          Q is COMPLEX array, dimension (LDQ,NQ)
!> 
[in]LDQ
!>          LDQ is INTEGER
!>              The leading dimension of Q as declared in
!>              the calling procedure.
!> 
[in]NZ
!>          NZ is INTEGER
!>              The order of the matrix Z
!> 
[in]ZSTART
!>          ZSTART is INTEGER
!>              Start index of the matrix Z. Rotations are applied
!>              To columns k+1-qStart:k+2-qStart of Z.
!> 
[in,out]Z
!>          Z is COMPLEX array, dimension (LDZ,NZ)
!> 
[in]LDZ
!>          LDZ is INTEGER
!>              The leading dimension of Q as declared in
!>              the calling procedure.
!> 
Author
Thijs Steel, KU Leuven
Date
May 2020

Definition at line 169 of file claqz1.f.

172 IMPLICIT NONE
173*
174* Arguments
175 LOGICAL, INTENT( IN ) :: ILQ, ILZ
176 INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
177 $ NQ, NZ, QSTART, ZSTART, IHI
178 COMPLEX :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
179*
180* Parameters
181 COMPLEX CZERO, CONE
182 parameter( czero = ( 0.0, 0.0 ), cone = ( 1.0, 0.0 ) )
183 REAL :: ZERO, ONE, HALF
184 parameter( zero = 0.0, one = 1.0, half = 0.5 )
185*
186* Local variables
187 REAL :: C
188 COMPLEX :: S, TEMP
189*
190* External Functions
191 EXTERNAL :: clartg, crot
192*
193 IF( k+1 .EQ. ihi ) THEN
194*
195* Shift is located on the edge of the matrix, remove it
196*
197 CALL clartg( b( ihi, ihi ), b( ihi, ihi-1 ), c, s, temp )
198 b( ihi, ihi ) = temp
199 b( ihi, ihi-1 ) = czero
200 CALL crot( ihi-istartm, b( istartm, ihi ), 1, b( istartm,
201 $ ihi-1 ), 1, c, s )
202 CALL crot( ihi-istartm+1, a( istartm, ihi ), 1, a( istartm,
203 $ ihi-1 ), 1, c, s )
204 IF ( ilz ) THEN
205 CALL crot( nz, z( 1, ihi-zstart+1 ), 1, z( 1,
206 $ ihi-1-zstart+
207 $ 1 ), 1, c, s )
208 END IF
209*
210 ELSE
211*
212* Normal operation, move bulge down
213*
214*
215* Apply transformation from the right
216*
217 CALL clartg( b( k+1, k+1 ), b( k+1, k ), c, s, temp )
218 b( k+1, k+1 ) = temp
219 b( k+1, k ) = czero
220 CALL crot( k+2-istartm+1, a( istartm, k+1 ), 1, a( istartm,
221 $ k ), 1, c, s )
222 CALL crot( k-istartm+1, b( istartm, k+1 ), 1, b( istartm,
223 $ k ),
224 $ 1, c, s )
225 IF ( ilz ) THEN
226 CALL crot( nz, z( 1, k+1-zstart+1 ), 1, z( 1,
227 $ k-zstart+1 ),
228 $ 1, c, s )
229 END IF
230*
231* Apply transformation from the left
232*
233 CALL clartg( a( k+1, k ), a( k+2, k ), c, s, temp )
234 a( k+1, k ) = temp
235 a( k+2, k ) = czero
236 CALL crot( istopm-k, a( k+1, k+1 ), lda, a( k+2, k+1 ), lda,
237 $ c,
238 $ s )
239 CALL crot( istopm-k, b( k+1, k+1 ), ldb, b( k+2, k+1 ), ldb,
240 $ c,
241 $ s )
242 IF ( ilq ) THEN
243 CALL crot( nq, q( 1, k+1-qstart+1 ), 1, q( 1, k+2-qstart+
244 $ 1 ), 1, c, conjg( s ) )
245 END IF
246*
247 END IF
248*
249* End of CLAQZ1
250*
subroutine clartg(f, g, c, s, r)
CLARTG generates a plane rotation with real cosine and complex sine.
Definition clartg.f90:116
subroutine crot(n, cx, incx, cy, incy, c, s)
CROT applies a plane rotation with real cosine and complex sine to a pair of complex vectors.
Definition crot.f:101
Here is the call graph for this function:
Here is the caller graph for this function: