LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine clartg | ( | complex(wp) | f, |
complex(wp) | g, | ||
real(wp) | c, | ||
complex(wp) | s, | ||
complex(wp) | r ) |
CLARTG generates a plane rotation with real cosine and complex sine.
!> !> CLARTG generates a plane rotation so that !> !> [ C S ] . [ F ] = [ R ] !> [ -conjg(S) C ] [ G ] [ 0 ] !> !> where C is real and C**2 + |S|**2 = 1. !> !> The mathematical formulas used for C and S are !> !> sgn(x) = { x / |x|, x != 0 !> { 1, x = 0 !> !> R = sgn(F) * sqrt(|F|**2 + |G|**2) !> !> C = |F| / sqrt(|F|**2 + |G|**2) !> !> S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2) !> !> Special conditions: !> If G=0, then C=1 and S=0. !> If F=0, then C=0 and S is chosen so that R is real. !> !> When F and G are real, the formulas simplify to C = F/R and !> S = G/R, and the returned values of C, S, and R should be !> identical to those returned by SLARTG. !> !> The algorithm used to compute these quantities incorporates scaling !> to avoid overflow or underflow in computing the square root of the !> sum of squares. !> !> This is the same routine CROTG fom BLAS1, except that !> F and G are unchanged on return. !> !> Below, wp=>sp stands for single precision from LA_CONSTANTS module. !>
[in] | F | !> F is COMPLEX(wp) !> The first component of vector to be rotated. !> |
[in] | G | !> G is COMPLEX(wp) !> The second component of vector to be rotated. !> |
[out] | C | !> C is REAL(wp) !> The cosine of the rotation. !> |
[out] | S | !> S is COMPLEX(wp) !> The sine of the rotation. !> |
[out] | R | !> R is COMPLEX(wp) !> The nonzero component of the rotated vector. !> |
!> !> Based on the algorithm from !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !>
Definition at line 115 of file clartg.f90.