LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dggev3.f
Go to the documentation of this file.
1*> \brief <b> DGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (blocked algorithm)</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DGGEV3 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggev3.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggev3.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggev3.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR,
20* $ ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK,
21* $ INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER JOBVL, JOBVR
25* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
26* ..
27* .. Array Arguments ..
28* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
29* $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
30* $ VR( LDVR, * ), WORK( * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> DGGEV3 computes for a pair of N-by-N real nonsymmetric matrices (A,B)
40*> the generalized eigenvalues, and optionally, the left and/or right
41*> generalized eigenvectors.
42*>
43*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
44*> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
45*> singular. It is usually represented as the pair (alpha,beta), as
46*> there is a reasonable interpretation for beta=0, and even for both
47*> being zero.
48*>
49*> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
50*> of (A,B) satisfies
51*>
52*> A * v(j) = lambda(j) * B * v(j).
53*>
54*> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
55*> of (A,B) satisfies
56*>
57*> u(j)**H * A = lambda(j) * u(j)**H * B .
58*>
59*> where u(j)**H is the conjugate-transpose of u(j).
60*>
61*> \endverbatim
62*
63* Arguments:
64* ==========
65*
66*> \param[in] JOBVL
67*> \verbatim
68*> JOBVL is CHARACTER*1
69*> = 'N': do not compute the left generalized eigenvectors;
70*> = 'V': compute the left generalized eigenvectors.
71*> \endverbatim
72*>
73*> \param[in] JOBVR
74*> \verbatim
75*> JOBVR is CHARACTER*1
76*> = 'N': do not compute the right generalized eigenvectors;
77*> = 'V': compute the right generalized eigenvectors.
78*> \endverbatim
79*>
80*> \param[in] N
81*> \verbatim
82*> N is INTEGER
83*> The order of the matrices A, B, VL, and VR. N >= 0.
84*> \endverbatim
85*>
86*> \param[in,out] A
87*> \verbatim
88*> A is DOUBLE PRECISION array, dimension (LDA, N)
89*> On entry, the matrix A in the pair (A,B).
90*> On exit, A has been overwritten.
91*> \endverbatim
92*>
93*> \param[in] LDA
94*> \verbatim
95*> LDA is INTEGER
96*> The leading dimension of A. LDA >= max(1,N).
97*> \endverbatim
98*>
99*> \param[in,out] B
100*> \verbatim
101*> B is DOUBLE PRECISION array, dimension (LDB, N)
102*> On entry, the matrix B in the pair (A,B).
103*> On exit, B has been overwritten.
104*> \endverbatim
105*>
106*> \param[in] LDB
107*> \verbatim
108*> LDB is INTEGER
109*> The leading dimension of B. LDB >= max(1,N).
110*> \endverbatim
111*>
112*> \param[out] ALPHAR
113*> \verbatim
114*> ALPHAR is DOUBLE PRECISION array, dimension (N)
115*> \endverbatim
116*>
117*> \param[out] ALPHAI
118*> \verbatim
119*> ALPHAI is DOUBLE PRECISION array, dimension (N)
120*> \endverbatim
121*>
122*> \param[out] BETA
123*> \verbatim
124*> BETA is DOUBLE PRECISION array, dimension (N)
125*> On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
126*> be the generalized eigenvalues. If ALPHAI(j) is zero, then
127*> the j-th eigenvalue is real; if positive, then the j-th and
128*> (j+1)-st eigenvalues are a complex conjugate pair, with
129*> ALPHAI(j+1) negative.
130*>
131*> Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
132*> may easily over- or underflow, and BETA(j) may even be zero.
133*> Thus, the user should avoid naively computing the ratio
134*> alpha/beta. However, ALPHAR and ALPHAI will be always less
135*> than and usually comparable with norm(A) in magnitude, and
136*> BETA always less than and usually comparable with norm(B).
137*> \endverbatim
138*>
139*> \param[out] VL
140*> \verbatim
141*> VL is DOUBLE PRECISION array, dimension (LDVL,N)
142*> If JOBVL = 'V', the left eigenvectors u(j) are stored one
143*> after another in the columns of VL, in the same order as
144*> their eigenvalues. If the j-th eigenvalue is real, then
145*> u(j) = VL(:,j), the j-th column of VL. If the j-th and
146*> (j+1)-th eigenvalues form a complex conjugate pair, then
147*> u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
148*> Each eigenvector is scaled so the largest component has
149*> abs(real part)+abs(imag. part)=1.
150*> Not referenced if JOBVL = 'N'.
151*> \endverbatim
152*>
153*> \param[in] LDVL
154*> \verbatim
155*> LDVL is INTEGER
156*> The leading dimension of the matrix VL. LDVL >= 1, and
157*> if JOBVL = 'V', LDVL >= N.
158*> \endverbatim
159*>
160*> \param[out] VR
161*> \verbatim
162*> VR is DOUBLE PRECISION array, dimension (LDVR,N)
163*> If JOBVR = 'V', the right eigenvectors v(j) are stored one
164*> after another in the columns of VR, in the same order as
165*> their eigenvalues. If the j-th eigenvalue is real, then
166*> v(j) = VR(:,j), the j-th column of VR. If the j-th and
167*> (j+1)-th eigenvalues form a complex conjugate pair, then
168*> v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
169*> Each eigenvector is scaled so the largest component has
170*> abs(real part)+abs(imag. part)=1.
171*> Not referenced if JOBVR = 'N'.
172*> \endverbatim
173*>
174*> \param[in] LDVR
175*> \verbatim
176*> LDVR is INTEGER
177*> The leading dimension of the matrix VR. LDVR >= 1, and
178*> if JOBVR = 'V', LDVR >= N.
179*> \endverbatim
180*>
181*> \param[out] WORK
182*> \verbatim
183*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
184*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
185*> \endverbatim
186*>
187*> \param[in] LWORK
188*> \verbatim
189*> LWORK is INTEGER.
190*> The dimension of the array WORK. LWORK >= MAX(1,8*N).
191*> For good performance, LWORK should generally be larger.
192*>
193*> If LWORK = -1, then a workspace query is assumed; the routine
194*> only calculates the optimal size of the WORK array, returns
195*> this value as the first entry of the WORK array, and no error
196*> message related to LWORK is issued by XERBLA.
197*> \endverbatim
198*>
199*> \param[out] INFO
200*> \verbatim
201*> INFO is INTEGER
202*> = 0: successful exit
203*> < 0: if INFO = -i, the i-th argument had an illegal value.
204*> = 1,...,N:
205*> The QZ iteration failed. No eigenvectors have been
206*> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
207*> should be correct for j=INFO+1,...,N.
208*> > N: =N+1: other than QZ iteration failed in DLAQZ0.
209*> =N+2: error return from DTGEVC.
210*> \endverbatim
211*
212* Authors:
213* ========
214*
215*> \author Univ. of Tennessee
216*> \author Univ. of California Berkeley
217*> \author Univ. of Colorado Denver
218*> \author NAG Ltd.
219*
220*> \ingroup ggev3
221*
222* =====================================================================
223 SUBROUTINE dggev3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR,
224 $ ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK,
225 $ INFO )
226*
227* -- LAPACK driver routine --
228* -- LAPACK is a software package provided by Univ. of Tennessee, --
229* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
230*
231* .. Scalar Arguments ..
232 CHARACTER JOBVL, JOBVR
233 INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N
234* ..
235* .. Array Arguments ..
236 DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
237 $ B( LDB, * ), BETA( * ), VL( LDVL, * ),
238 $ vr( ldvr, * ), work( * )
239* ..
240*
241* =====================================================================
242*
243* .. Parameters ..
244 DOUBLE PRECISION ZERO, ONE
245 PARAMETER ( ZERO = 0.0d+0, one = 1.0d+0 )
246* ..
247* .. Local Scalars ..
248 LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY
249 CHARACTER CHTEMP
250 INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO,
251 $ in, iright, irows, itau, iwrk, jc, jr, lwkopt,
252 $ lwkmin
253 DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
254 $ SMLNUM, TEMP
255* ..
256* .. Local Arrays ..
257 LOGICAL LDUMMA( 1 )
258* ..
259* .. External Subroutines ..
260 EXTERNAL dgeqrf, dggbak, dggbal,
261 $ dgghd3, dlaqz0, dlacpy,
262 $ dlascl, dlaset, dorgqr,
264* ..
265* .. External Functions ..
266 LOGICAL LSAME
267 DOUBLE PRECISION DLAMCH, DLANGE
268 EXTERNAL lsame, dlamch, dlange
269* ..
270* .. Intrinsic Functions ..
271 INTRINSIC abs, max, sqrt
272* ..
273* .. Executable Statements ..
274*
275* Decode the input arguments
276*
277 IF( lsame( jobvl, 'N' ) ) THEN
278 ijobvl = 1
279 ilvl = .false.
280 ELSE IF( lsame( jobvl, 'V' ) ) THEN
281 ijobvl = 2
282 ilvl = .true.
283 ELSE
284 ijobvl = -1
285 ilvl = .false.
286 END IF
287*
288 IF( lsame( jobvr, 'N' ) ) THEN
289 ijobvr = 1
290 ilvr = .false.
291 ELSE IF( lsame( jobvr, 'V' ) ) THEN
292 ijobvr = 2
293 ilvr = .true.
294 ELSE
295 ijobvr = -1
296 ilvr = .false.
297 END IF
298 ilv = ilvl .OR. ilvr
299*
300* Test the input arguments
301*
302 info = 0
303 lquery = ( lwork.EQ.-1 )
304 lwkmin = max( 1, 8*n )
305 IF( ijobvl.LE.0 ) THEN
306 info = -1
307 ELSE IF( ijobvr.LE.0 ) THEN
308 info = -2
309 ELSE IF( n.LT.0 ) THEN
310 info = -3
311 ELSE IF( lda.LT.max( 1, n ) ) THEN
312 info = -5
313 ELSE IF( ldb.LT.max( 1, n ) ) THEN
314 info = -7
315 ELSE IF( ldvl.LT.1 .OR. ( ilvl .AND. ldvl.LT.n ) ) THEN
316 info = -12
317 ELSE IF( ldvr.LT.1 .OR. ( ilvr .AND. ldvr.LT.n ) ) THEN
318 info = -14
319 ELSE IF( lwork.LT.lwkmin .AND. .NOT.lquery ) THEN
320 info = -16
321 END IF
322*
323* Compute workspace
324*
325 IF( info.EQ.0 ) THEN
326 CALL dgeqrf( n, n, b, ldb, work, work, -1, ierr )
327 lwkopt = max( lwkmin, 3*n+int( work( 1 ) ) )
328 CALL dormqr( 'L', 'T', n, n, n, b, ldb, work, a, lda,
329 $ work, -1, ierr )
330 lwkopt = max( lwkopt, 3*n+int( work( 1 ) ) )
331 IF( ilvl ) THEN
332 CALL dorgqr( n, n, n, vl, ldvl, work, work, -1, ierr )
333 lwkopt = max( lwkopt, 3*n+int( work( 1 ) ) )
334 END IF
335 IF( ilv ) THEN
336 CALL dgghd3( jobvl, jobvr, n, 1, n, a, lda, b, ldb, vl,
337 $ ldvl, vr, ldvr, work, -1, ierr )
338 lwkopt = max( lwkopt, 3*n+int( work( 1 ) ) )
339 CALL dlaqz0( 'S', jobvl, jobvr, n, 1, n, a, lda, b, ldb,
340 $ alphar, alphai, beta, vl, ldvl, vr, ldvr,
341 $ work, -1, 0, ierr )
342 lwkopt = max( lwkopt, 2*n+int( work( 1 ) ) )
343 ELSE
344 CALL dgghd3( 'N', 'N', n, 1, n, a, lda, b, ldb, vl, ldvl,
345 $ vr, ldvr, work, -1, ierr )
346 lwkopt = max( lwkopt, 3*n+int( work( 1 ) ) )
347 CALL dlaqz0( 'E', jobvl, jobvr, n, 1, n, a, lda, b, ldb,
348 $ alphar, alphai, beta, vl, ldvl, vr, ldvr,
349 $ work, -1, 0, ierr )
350 lwkopt = max( lwkopt, 2*n+int( work( 1 ) ) )
351 END IF
352 IF( n.EQ.0 ) THEN
353 work( 1 ) = 1
354 ELSE
355 work( 1 ) = lwkopt
356 END IF
357 END IF
358*
359 IF( info.NE.0 ) THEN
360 CALL xerbla( 'DGGEV3 ', -info )
361 RETURN
362 ELSE IF( lquery ) THEN
363 RETURN
364 END IF
365*
366* Quick return if possible
367*
368 IF( n.EQ.0 )
369 $ RETURN
370*
371* Get machine constants
372*
373 eps = dlamch( 'P' )
374 smlnum = dlamch( 'S' )
375 bignum = one / smlnum
376 smlnum = sqrt( smlnum ) / eps
377 bignum = one / smlnum
378*
379* Scale A if max element outside range [SMLNUM,BIGNUM]
380*
381 anrm = dlange( 'M', n, n, a, lda, work )
382 ilascl = .false.
383 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
384 anrmto = smlnum
385 ilascl = .true.
386 ELSE IF( anrm.GT.bignum ) THEN
387 anrmto = bignum
388 ilascl = .true.
389 END IF
390 IF( ilascl )
391 $ CALL dlascl( 'G', 0, 0, anrm, anrmto, n, n, a, lda, ierr )
392*
393* Scale B if max element outside range [SMLNUM,BIGNUM]
394*
395 bnrm = dlange( 'M', n, n, b, ldb, work )
396 ilbscl = .false.
397 IF( bnrm.GT.zero .AND. bnrm.LT.smlnum ) THEN
398 bnrmto = smlnum
399 ilbscl = .true.
400 ELSE IF( bnrm.GT.bignum ) THEN
401 bnrmto = bignum
402 ilbscl = .true.
403 END IF
404 IF( ilbscl )
405 $ CALL dlascl( 'G', 0, 0, bnrm, bnrmto, n, n, b, ldb, ierr )
406*
407* Permute the matrices A, B to isolate eigenvalues if possible
408*
409 ileft = 1
410 iright = n + 1
411 iwrk = iright + n
412 CALL dggbal( 'P', n, a, lda, b, ldb, ilo, ihi, work( ileft ),
413 $ work( iright ), work( iwrk ), ierr )
414*
415* Reduce B to triangular form (QR decomposition of B)
416*
417 irows = ihi + 1 - ilo
418 IF( ilv ) THEN
419 icols = n + 1 - ilo
420 ELSE
421 icols = irows
422 END IF
423 itau = iwrk
424 iwrk = itau + irows
425 CALL dgeqrf( irows, icols, b( ilo, ilo ), ldb, work( itau ),
426 $ work( iwrk ), lwork+1-iwrk, ierr )
427*
428* Apply the orthogonal transformation to matrix A
429*
430 CALL dormqr( 'L', 'T', irows, icols, irows, b( ilo, ilo ), ldb,
431 $ work( itau ), a( ilo, ilo ), lda, work( iwrk ),
432 $ lwork+1-iwrk, ierr )
433*
434* Initialize VL
435*
436 IF( ilvl ) THEN
437 CALL dlaset( 'Full', n, n, zero, one, vl, ldvl )
438 IF( irows.GT.1 ) THEN
439 CALL dlacpy( 'L', irows-1, irows-1, b( ilo+1, ilo ), ldb,
440 $ vl( ilo+1, ilo ), ldvl )
441 END IF
442 CALL dorgqr( irows, irows, irows, vl( ilo, ilo ), ldvl,
443 $ work( itau ), work( iwrk ), lwork+1-iwrk, ierr )
444 END IF
445*
446* Initialize VR
447*
448 IF( ilvr )
449 $ CALL dlaset( 'Full', n, n, zero, one, vr, ldvr )
450*
451* Reduce to generalized Hessenberg form
452*
453 IF( ilv ) THEN
454*
455* Eigenvectors requested -- work on whole matrix.
456*
457 CALL dgghd3( jobvl, jobvr, n, ilo, ihi, a, lda, b, ldb, vl,
458 $ ldvl, vr, ldvr, work( iwrk ), lwork+1-iwrk, ierr )
459 ELSE
460 CALL dgghd3( 'N', 'N', irows, 1, irows, a( ilo, ilo ), lda,
461 $ b( ilo, ilo ), ldb, vl, ldvl, vr, ldvr,
462 $ work( iwrk ), lwork+1-iwrk, ierr )
463 END IF
464*
465* Perform QZ algorithm (Compute eigenvalues, and optionally, the
466* Schur forms and Schur vectors)
467*
468 iwrk = itau
469 IF( ilv ) THEN
470 chtemp = 'S'
471 ELSE
472 chtemp = 'E'
473 END IF
474 CALL dlaqz0( chtemp, jobvl, jobvr, n, ilo, ihi, a, lda, b, ldb,
475 $ alphar, alphai, beta, vl, ldvl, vr, ldvr,
476 $ work( iwrk ), lwork+1-iwrk, 0, ierr )
477 IF( ierr.NE.0 ) THEN
478 IF( ierr.GT.0 .AND. ierr.LE.n ) THEN
479 info = ierr
480 ELSE IF( ierr.GT.n .AND. ierr.LE.2*n ) THEN
481 info = ierr - n
482 ELSE
483 info = n + 1
484 END IF
485 GO TO 110
486 END IF
487*
488* Compute Eigenvectors
489*
490 IF( ilv ) THEN
491 IF( ilvl ) THEN
492 IF( ilvr ) THEN
493 chtemp = 'B'
494 ELSE
495 chtemp = 'L'
496 END IF
497 ELSE
498 chtemp = 'R'
499 END IF
500 CALL dtgevc( chtemp, 'B', ldumma, n, a, lda, b, ldb, vl,
501 $ ldvl,
502 $ vr, ldvr, n, in, work( iwrk ), ierr )
503 IF( ierr.NE.0 ) THEN
504 info = n + 2
505 GO TO 110
506 END IF
507*
508* Undo balancing on VL and VR and normalization
509*
510 IF( ilvl ) THEN
511 CALL dggbak( 'P', 'L', n, ilo, ihi, work( ileft ),
512 $ work( iright ), n, vl, ldvl, ierr )
513 DO 50 jc = 1, n
514 IF( alphai( jc ).LT.zero )
515 $ GO TO 50
516 temp = zero
517 IF( alphai( jc ).EQ.zero ) THEN
518 DO 10 jr = 1, n
519 temp = max( temp, abs( vl( jr, jc ) ) )
520 10 CONTINUE
521 ELSE
522 DO 20 jr = 1, n
523 temp = max( temp, abs( vl( jr, jc ) )+
524 $ abs( vl( jr, jc+1 ) ) )
525 20 CONTINUE
526 END IF
527 IF( temp.LT.smlnum )
528 $ GO TO 50
529 temp = one / temp
530 IF( alphai( jc ).EQ.zero ) THEN
531 DO 30 jr = 1, n
532 vl( jr, jc ) = vl( jr, jc )*temp
533 30 CONTINUE
534 ELSE
535 DO 40 jr = 1, n
536 vl( jr, jc ) = vl( jr, jc )*temp
537 vl( jr, jc+1 ) = vl( jr, jc+1 )*temp
538 40 CONTINUE
539 END IF
540 50 CONTINUE
541 END IF
542 IF( ilvr ) THEN
543 CALL dggbak( 'P', 'R', n, ilo, ihi, work( ileft ),
544 $ work( iright ), n, vr, ldvr, ierr )
545 DO 100 jc = 1, n
546 IF( alphai( jc ).LT.zero )
547 $ GO TO 100
548 temp = zero
549 IF( alphai( jc ).EQ.zero ) THEN
550 DO 60 jr = 1, n
551 temp = max( temp, abs( vr( jr, jc ) ) )
552 60 CONTINUE
553 ELSE
554 DO 70 jr = 1, n
555 temp = max( temp, abs( vr( jr, jc ) )+
556 $ abs( vr( jr, jc+1 ) ) )
557 70 CONTINUE
558 END IF
559 IF( temp.LT.smlnum )
560 $ GO TO 100
561 temp = one / temp
562 IF( alphai( jc ).EQ.zero ) THEN
563 DO 80 jr = 1, n
564 vr( jr, jc ) = vr( jr, jc )*temp
565 80 CONTINUE
566 ELSE
567 DO 90 jr = 1, n
568 vr( jr, jc ) = vr( jr, jc )*temp
569 vr( jr, jc+1 ) = vr( jr, jc+1 )*temp
570 90 CONTINUE
571 END IF
572 100 CONTINUE
573 END IF
574*
575* End of eigenvector calculation
576*
577 END IF
578*
579* Undo scaling if necessary
580*
581 110 CONTINUE
582*
583 IF( ilascl ) THEN
584 CALL dlascl( 'G', 0, 0, anrmto, anrm, n, 1, alphar, n,
585 $ ierr )
586 CALL dlascl( 'G', 0, 0, anrmto, anrm, n, 1, alphai, n,
587 $ ierr )
588 END IF
589*
590 IF( ilbscl ) THEN
591 CALL dlascl( 'G', 0, 0, bnrmto, bnrm, n, 1, beta, n, ierr )
592 END IF
593*
594 work( 1 ) = lwkopt
595 RETURN
596*
597* End of DGGEV3
598*
599 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgeqrf(m, n, a, lda, tau, work, lwork, info)
DGEQRF
Definition dgeqrf.f:144
subroutine dggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
DGGBAK
Definition dggbak.f:146
subroutine dggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)
DGGBAL
Definition dggbal.f:175
subroutine dggev3(jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr, work, lwork, info)
DGGEV3 computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices (...
Definition dggev3.f:226
subroutine dgghd3(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, work, lwork, info)
DGGHD3
Definition dgghd3.f:229
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:101
recursive subroutine dlaqz0(wants, wantq, wantz, n, ilo, ihi, a, lda, b, ldb, alphar, alphai, beta, q, ldq, z, ldz, work, lwork, rec, info)
DLAQZ0
Definition dlaqz0.f:305
subroutine dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition dlascl.f:142
subroutine dlaset(uplo, m, n, alpha, beta, a, lda)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition dlaset.f:108
subroutine dtgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work, info)
DTGEVC
Definition dtgevc.f:293
subroutine dorgqr(m, n, k, a, lda, tau, work, lwork, info)
DORGQR
Definition dorgqr.f:126
subroutine dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMQR
Definition dormqr.f:165