LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ dormqr()

subroutine dormqr ( character side,
character trans,
integer m,
integer n,
integer k,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) tau,
double precision, dimension( ldc, * ) c,
integer ldc,
double precision, dimension( * ) work,
integer lwork,
integer info )

DORMQR

Download DORMQR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> DORMQR overwrites the general real M-by-N matrix C with !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'T': Q**T * C C * Q**T !> !> where Q is a real orthogonal matrix defined as the product of k !> elementary reflectors !> !> Q = H(1) H(2) . . . H(k) !> !> as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N !> if SIDE = 'R'. !>
Parameters
[in]SIDE
!> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**T from the Left; !> = 'R': apply Q or Q**T from the Right. !>
[in]TRANS
!> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'T': Transpose, apply Q**T. !>
[in]M
!> M is INTEGER !> The number of rows of the matrix C. M >= 0. !>
[in]N
!> N is INTEGER !> The number of columns of the matrix C. N >= 0. !>
[in]K
!> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> If SIDE = 'L', M >= K >= 0; !> if SIDE = 'R', N >= K >= 0. !>
[in]A
!> A is DOUBLE PRECISION array, dimension (LDA,K) !> The i-th column must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> DGEQRF in the first k columns of its array argument A. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !>
[in]TAU
!> TAU is DOUBLE PRECISION array, dimension (K) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i), as returned by DGEQRF. !>
[in,out]C
!> C is DOUBLE PRECISION array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. !>
[in]LDC
!> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !>
[out]WORK
!> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
[in]LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M). !> For good performance, LWORK should generally be larger. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 163 of file dormqr.f.

165*
166* -- LAPACK computational routine --
167* -- LAPACK is a software package provided by Univ. of Tennessee, --
168* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169*
170* .. Scalar Arguments ..
171 CHARACTER SIDE, TRANS
172 INTEGER INFO, K, LDA, LDC, LWORK, M, N
173* ..
174* .. Array Arguments ..
175 DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
176* ..
177*
178* =====================================================================
179*
180* .. Parameters ..
181 INTEGER NBMAX, LDT, TSIZE
182 parameter( nbmax = 64, ldt = nbmax+1,
183 $ tsize = ldt*nbmax )
184* ..
185* .. Local Scalars ..
186 LOGICAL LEFT, LQUERY, NOTRAN
187 INTEGER I, I1, I2, I3, IB, IC, IINFO, IWT, JC, LDWORK,
188 $ LWKOPT, MI, NB, NBMIN, NI, NQ, NW
189* ..
190* .. External Functions ..
191 LOGICAL LSAME
192 INTEGER ILAENV
193 EXTERNAL lsame, ilaenv
194* ..
195* .. External Subroutines ..
196 EXTERNAL dlarfb, dlarft, dorm2r, xerbla
197* ..
198* .. Intrinsic Functions ..
199 INTRINSIC max, min
200* ..
201* .. Executable Statements ..
202*
203* Test the input arguments
204*
205 info = 0
206 left = lsame( side, 'L' )
207 notran = lsame( trans, 'N' )
208 lquery = ( lwork.EQ.-1 )
209*
210* NQ is the order of Q and NW is the minimum dimension of WORK
211*
212 IF( left ) THEN
213 nq = m
214 nw = max( 1, n )
215 ELSE
216 nq = n
217 nw = max( 1, m )
218 END IF
219 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
220 info = -1
221 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) ) THEN
222 info = -2
223 ELSE IF( m.LT.0 ) THEN
224 info = -3
225 ELSE IF( n.LT.0 ) THEN
226 info = -4
227 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
228 info = -5
229 ELSE IF( lda.LT.max( 1, nq ) ) THEN
230 info = -7
231 ELSE IF( ldc.LT.max( 1, m ) ) THEN
232 info = -10
233 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
234 info = -12
235 END IF
236*
237 IF( info.EQ.0 ) THEN
238*
239* Compute the workspace requirements
240*
241 nb = min( nbmax, ilaenv( 1, 'DORMQR', side // trans, m, n,
242 $ k,
243 $ -1 ) )
244 lwkopt = nw*nb + tsize
245 work( 1 ) = lwkopt
246 END IF
247*
248 IF( info.NE.0 ) THEN
249 CALL xerbla( 'DORMQR', -info )
250 RETURN
251 ELSE IF( lquery ) THEN
252 RETURN
253 END IF
254*
255* Quick return if possible
256*
257 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 ) THEN
258 work( 1 ) = 1
259 RETURN
260 END IF
261*
262 nbmin = 2
263 ldwork = nw
264 IF( nb.GT.1 .AND. nb.LT.k ) THEN
265 IF( lwork.LT.lwkopt ) THEN
266 nb = (lwork-tsize) / ldwork
267 nbmin = max( 2, ilaenv( 2, 'DORMQR', side // trans, m, n,
268 $ k,
269 $ -1 ) )
270 END IF
271 END IF
272*
273 IF( nb.LT.nbmin .OR. nb.GE.k ) THEN
274*
275* Use unblocked code
276*
277 CALL dorm2r( side, trans, m, n, k, a, lda, tau, c, ldc,
278 $ work,
279 $ iinfo )
280 ELSE
281*
282* Use blocked code
283*
284 iwt = 1 + nw*nb
285 IF( ( left .AND. .NOT.notran ) .OR.
286 $ ( .NOT.left .AND. notran ) ) THEN
287 i1 = 1
288 i2 = k
289 i3 = nb
290 ELSE
291 i1 = ( ( k-1 ) / nb )*nb + 1
292 i2 = 1
293 i3 = -nb
294 END IF
295*
296 IF( left ) THEN
297 ni = n
298 jc = 1
299 ELSE
300 mi = m
301 ic = 1
302 END IF
303*
304 DO 10 i = i1, i2, i3
305 ib = min( nb, k-i+1 )
306*
307* Form the triangular factor of the block reflector
308* H = H(i) H(i+1) . . . H(i+ib-1)
309*
310 CALL dlarft( 'Forward', 'Columnwise', nq-i+1, ib, a( i,
311 $ i ),
312 $ lda, tau( i ), work( iwt ), ldt )
313 IF( left ) THEN
314*
315* H or H**T is applied to C(i:m,1:n)
316*
317 mi = m - i + 1
318 ic = i
319 ELSE
320*
321* H or H**T is applied to C(1:m,i:n)
322*
323 ni = n - i + 1
324 jc = i
325 END IF
326*
327* Apply H or H**T
328*
329 CALL dlarfb( side, trans, 'Forward', 'Columnwise', mi,
330 $ ni,
331 $ ib, a( i, i ), lda, work( iwt ), ldt,
332 $ c( ic, jc ), ldc, work, ldwork )
333 10 CONTINUE
334 END IF
335 work( 1 ) = lwkopt
336 RETURN
337*
338* End of DORMQR
339*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition dlarfb.f:195
recursive subroutine dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition dlarft.f:162
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dorm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
DORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sge...
Definition dorm2r.f:156
Here is the call graph for this function:
Here is the caller graph for this function: