LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dlarft.f
Go to the documentation of this file.
1*> \brief \b DLARFT forms the triangular factor T of a block reflector H = I - vtvH
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DLARFT + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarft.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarft.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarft.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
22*
23* .. Scalar Arguments ..
24* CHARACTER DIRECT, STOREV
25* INTEGER K, LDT, LDV, N
26* ..
27* .. Array Arguments ..
28* DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> DLARFT forms the triangular factor T of a real block reflector H
38*> of order n, which is defined as a product of k elementary reflectors.
39*>
40*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
41*>
42*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
43*>
44*> If STOREV = 'C', the vector which defines the elementary reflector
45*> H(i) is stored in the i-th column of the array V, and
46*>
47*> H = I - V * T * V**T
48*>
49*> If STOREV = 'R', the vector which defines the elementary reflector
50*> H(i) is stored in the i-th row of the array V, and
51*>
52*> H = I - V**T * T * V
53*> \endverbatim
54*
55* Arguments:
56* ==========
57*
58*> \param[in] DIRECT
59*> \verbatim
60*> DIRECT is CHARACTER*1
61*> Specifies the order in which the elementary reflectors are
62*> multiplied to form the block reflector:
63*> = 'F': H = H(1) H(2) . . . H(k) (Forward)
64*> = 'B': H = H(k) . . . H(2) H(1) (Backward)
65*> \endverbatim
66*>
67*> \param[in] STOREV
68*> \verbatim
69*> STOREV is CHARACTER*1
70*> Specifies how the vectors which define the elementary
71*> reflectors are stored (see also Further Details):
72*> = 'C': columnwise
73*> = 'R': rowwise
74*> \endverbatim
75*>
76*> \param[in] N
77*> \verbatim
78*> N is INTEGER
79*> The order of the block reflector H. N >= 0.
80*> \endverbatim
81*>
82*> \param[in] K
83*> \verbatim
84*> K is INTEGER
85*> The order of the triangular factor T (= the number of
86*> elementary reflectors). K >= 1.
87*> \endverbatim
88*>
89*> \param[in] V
90*> \verbatim
91*> V is DOUBLE PRECISION array, dimension
92*> (LDV,K) if STOREV = 'C'
93*> (LDV,N) if STOREV = 'R'
94*> The matrix V. See further details.
95*> \endverbatim
96*>
97*> \param[in] LDV
98*> \verbatim
99*> LDV is INTEGER
100*> The leading dimension of the array V.
101*> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
102*> \endverbatim
103*>
104*> \param[in] TAU
105*> \verbatim
106*> TAU is DOUBLE PRECISION array, dimension (K)
107*> TAU(i) must contain the scalar factor of the elementary
108*> reflector H(i).
109*> \endverbatim
110*>
111*> \param[out] T
112*> \verbatim
113*> T is DOUBLE PRECISION array, dimension (LDT,K)
114*> The k by k triangular factor T of the block reflector.
115*> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
116*> lower triangular. The rest of the array is not used.
117*> \endverbatim
118*>
119*> \param[in] LDT
120*> \verbatim
121*> LDT is INTEGER
122*> The leading dimension of the array T. LDT >= K.
123*> \endverbatim
124*
125* Authors:
126* ========
127*
128*> \author Univ. of Tennessee
129*> \author Univ. of California Berkeley
130*> \author Univ. of Colorado Denver
131*> \author NAG Ltd.
132*
133*> \ingroup larft
134*
135*> \par Further Details:
136* =====================
137*>
138*> \verbatim
139*>
140*> The shape of the matrix V and the storage of the vectors which define
141*> the H(i) is best illustrated by the following example with n = 5 and
142*> k = 3. The elements equal to 1 are not stored.
143*>
144*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
145*>
146*> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
147*> ( v1 1 ) ( 1 v2 v2 v2 )
148*> ( v1 v2 1 ) ( 1 v3 v3 )
149*> ( v1 v2 v3 )
150*> ( v1 v2 v3 )
151*>
152*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
153*>
154*> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
155*> ( v1 v2 v3 ) ( v2 v2 v2 1 )
156*> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
157*> ( 1 v3 )
158*> ( 1 )
159*> \endverbatim
160*>
161* =====================================================================
162 SUBROUTINE dlarft( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
163*
164* -- LAPACK auxiliary routine --
165* -- LAPACK is a software package provided by Univ. of Tennessee, --
166* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
167*
168* .. Scalar Arguments ..
169 CHARACTER DIRECT, STOREV
170 INTEGER K, LDT, LDV, N
171* ..
172* .. Array Arguments ..
173 DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * )
174* ..
175*
176* =====================================================================
177*
178* .. Parameters ..
179 DOUBLE PRECISION ONE, ZERO
180 parameter( one = 1.0d+0, zero = 0.0d+0 )
181* ..
182* .. Local Scalars ..
183 INTEGER I, J, PREVLASTV, LASTV
184* ..
185* .. External Subroutines ..
186 EXTERNAL dgemv, dtrmv
187* ..
188* .. External Functions ..
189 LOGICAL LSAME
190 EXTERNAL lsame
191* ..
192* .. Executable Statements ..
193*
194* Quick return if possible
195*
196 IF( n.EQ.0 )
197 $ RETURN
198*
199 IF( lsame( direct, 'F' ) ) THEN
200 prevlastv = n
201 DO i = 1, k
202 prevlastv = max( i, prevlastv )
203 IF( tau( i ).EQ.zero ) THEN
204*
205* H(i) = I
206*
207 DO j = 1, i
208 t( j, i ) = zero
209 END DO
210 ELSE
211*
212* general case
213*
214 IF( lsame( storev, 'C' ) ) THEN
215* Skip any trailing zeros.
216 DO lastv = n, i+1, -1
217 IF( v( lastv, i ).NE.zero ) EXIT
218 END DO
219 DO j = 1, i-1
220 t( j, i ) = -tau( i ) * v( i , j )
221 END DO
222 j = min( lastv, prevlastv )
223*
224* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i)
225*
226 CALL dgemv( 'Transpose', j-i, i-1, -tau( i ),
227 $ v( i+1, 1 ), ldv, v( i+1, i ), 1, one,
228 $ t( 1, i ), 1 )
229 ELSE
230* Skip any trailing zeros.
231 DO lastv = n, i+1, -1
232 IF( v( i, lastv ).NE.zero ) EXIT
233 END DO
234 DO j = 1, i-1
235 t( j, i ) = -tau( i ) * v( j , i )
236 END DO
237 j = min( lastv, prevlastv )
238*
239* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T
240*
241 CALL dgemv( 'No transpose', i-1, j-i, -tau( i ),
242 $ v( 1, i+1 ), ldv, v( i, i+1 ), ldv, one,
243 $ t( 1, i ), 1 )
244 END IF
245*
246* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
247*
248 CALL dtrmv( 'Upper', 'No transpose', 'Non-unit', i-1, t,
249 $ ldt, t( 1, i ), 1 )
250 t( i, i ) = tau( i )
251 IF( i.GT.1 ) THEN
252 prevlastv = max( prevlastv, lastv )
253 ELSE
254 prevlastv = lastv
255 END IF
256 END IF
257 END DO
258 ELSE
259 prevlastv = 1
260 DO i = k, 1, -1
261 IF( tau( i ).EQ.zero ) THEN
262*
263* H(i) = I
264*
265 DO j = i, k
266 t( j, i ) = zero
267 END DO
268 ELSE
269*
270* general case
271*
272 IF( i.LT.k ) THEN
273 IF( lsame( storev, 'C' ) ) THEN
274* Skip any leading zeros.
275 DO lastv = 1, i-1
276 IF( v( lastv, i ).NE.zero ) EXIT
277 END DO
278 DO j = i+1, k
279 t( j, i ) = -tau( i ) * v( n-k+i , j )
280 END DO
281 j = max( lastv, prevlastv )
282*
283* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i)
284*
285 CALL dgemv( 'Transpose', n-k+i-j, k-i, -tau( i ),
286 $ v( j, i+1 ), ldv, v( j, i ), 1, one,
287 $ t( i+1, i ), 1 )
288 ELSE
289* Skip any leading zeros.
290 DO lastv = 1, i-1
291 IF( v( i, lastv ).NE.zero ) EXIT
292 END DO
293 DO j = i+1, k
294 t( j, i ) = -tau( i ) * v( j, n-k+i )
295 END DO
296 j = max( lastv, prevlastv )
297*
298* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T
299*
300 CALL dgemv( 'No transpose', k-i, n-k+i-j,
301 $ -tau( i ), v( i+1, j ), ldv, v( i, j ), ldv,
302 $ one, t( i+1, i ), 1 )
303 END IF
304*
305* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
306*
307 CALL dtrmv( 'Lower', 'No transpose', 'Non-unit', k-i,
308 $ t( i+1, i+1 ), ldt, t( i+1, i ), 1 )
309 IF( i.GT.1 ) THEN
310 prevlastv = min( prevlastv, lastv )
311 ELSE
312 prevlastv = lastv
313 END IF
314 END IF
315 t( i, i ) = tau( i )
316 END IF
317 END DO
318 END IF
319 RETURN
320*
321* End of DLARFT
322*
323 END
subroutine dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
DGEMV
Definition dgemv.f:158
subroutine dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition dlarft.f:163
subroutine dtrmv(uplo, trans, diag, n, a, lda, x, incx)
DTRMV
Definition dtrmv.f:147