LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dgemm.f
Go to the documentation of this file.
1*> \brief \b DGEMM
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
12*
13* .. Scalar Arguments ..
14* DOUBLE PRECISION ALPHA,BETA
15* INTEGER K,LDA,LDB,LDC,M,N
16* CHARACTER TRANSA,TRANSB
17* ..
18* .. Array Arguments ..
19* DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
20* ..
21*
22*
23*> \par Purpose:
24* =============
25*>
26*> \verbatim
27*>
28*> DGEMM performs one of the matrix-matrix operations
29*>
30*> C := alpha*op( A )*op( B ) + beta*C,
31*>
32*> where op( X ) is one of
33*>
34*> op( X ) = X or op( X ) = X**T,
35*>
36*> alpha and beta are scalars, and A, B and C are matrices, with op( A )
37*> an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
38*> \endverbatim
39*
40* Arguments:
41* ==========
42*
43*> \param[in] TRANSA
44*> \verbatim
45*> TRANSA is CHARACTER*1
46*> On entry, TRANSA specifies the form of op( A ) to be used in
47*> the matrix multiplication as follows:
48*>
49*> TRANSA = 'N' or 'n', op( A ) = A.
50*>
51*> TRANSA = 'T' or 't', op( A ) = A**T.
52*>
53*> TRANSA = 'C' or 'c', op( A ) = A**T.
54*> \endverbatim
55*>
56*> \param[in] TRANSB
57*> \verbatim
58*> TRANSB is CHARACTER*1
59*> On entry, TRANSB specifies the form of op( B ) to be used in
60*> the matrix multiplication as follows:
61*>
62*> TRANSB = 'N' or 'n', op( B ) = B.
63*>
64*> TRANSB = 'T' or 't', op( B ) = B**T.
65*>
66*> TRANSB = 'C' or 'c', op( B ) = B**T.
67*> \endverbatim
68*>
69*> \param[in] M
70*> \verbatim
71*> M is INTEGER
72*> On entry, M specifies the number of rows of the matrix
73*> op( A ) and of the matrix C. M must be at least zero.
74*> \endverbatim
75*>
76*> \param[in] N
77*> \verbatim
78*> N is INTEGER
79*> On entry, N specifies the number of columns of the matrix
80*> op( B ) and the number of columns of the matrix C. N must be
81*> at least zero.
82*> \endverbatim
83*>
84*> \param[in] K
85*> \verbatim
86*> K is INTEGER
87*> On entry, K specifies the number of columns of the matrix
88*> op( A ) and the number of rows of the matrix op( B ). K must
89*> be at least zero.
90*> \endverbatim
91*>
92*> \param[in] ALPHA
93*> \verbatim
94*> ALPHA is DOUBLE PRECISION.
95*> On entry, ALPHA specifies the scalar alpha.
96*> \endverbatim
97*>
98*> \param[in] A
99*> \verbatim
100*> A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is
101*> k when TRANSA = 'N' or 'n', and is m otherwise.
102*> Before entry with TRANSA = 'N' or 'n', the leading m by k
103*> part of the array A must contain the matrix A, otherwise
104*> the leading k by m part of the array A must contain the
105*> matrix A.
106*> \endverbatim
107*>
108*> \param[in] LDA
109*> \verbatim
110*> LDA is INTEGER
111*> On entry, LDA specifies the first dimension of A as declared
112*> in the calling (sub) program. When TRANSA = 'N' or 'n' then
113*> LDA must be at least max( 1, m ), otherwise LDA must be at
114*> least max( 1, k ).
115*> \endverbatim
116*>
117*> \param[in] B
118*> \verbatim
119*> B is DOUBLE PRECISION array, dimension ( LDB, kb ), where kb is
120*> n when TRANSB = 'N' or 'n', and is k otherwise.
121*> Before entry with TRANSB = 'N' or 'n', the leading k by n
122*> part of the array B must contain the matrix B, otherwise
123*> the leading n by k part of the array B must contain the
124*> matrix B.
125*> \endverbatim
126*>
127*> \param[in] LDB
128*> \verbatim
129*> LDB is INTEGER
130*> On entry, LDB specifies the first dimension of B as declared
131*> in the calling (sub) program. When TRANSB = 'N' or 'n' then
132*> LDB must be at least max( 1, k ), otherwise LDB must be at
133*> least max( 1, n ).
134*> \endverbatim
135*>
136*> \param[in] BETA
137*> \verbatim
138*> BETA is DOUBLE PRECISION.
139*> On entry, BETA specifies the scalar beta. When BETA is
140*> supplied as zero then C need not be set on input.
141*> \endverbatim
142*>
143*> \param[in,out] C
144*> \verbatim
145*> C is DOUBLE PRECISION array, dimension ( LDC, N )
146*> Before entry, the leading m by n part of the array C must
147*> contain the matrix C, except when beta is zero, in which
148*> case C need not be set on entry.
149*> On exit, the array C is overwritten by the m by n matrix
150*> ( alpha*op( A )*op( B ) + beta*C ).
151*> \endverbatim
152*>
153*> \param[in] LDC
154*> \verbatim
155*> LDC is INTEGER
156*> On entry, LDC specifies the first dimension of C as declared
157*> in the calling (sub) program. LDC must be at least
158*> max( 1, m ).
159*> \endverbatim
160*
161* Authors:
162* ========
163*
164*> \author Univ. of Tennessee
165*> \author Univ. of California Berkeley
166*> \author Univ. of Colorado Denver
167*> \author NAG Ltd.
168*
169*> \ingroup double_blas_level3
170*
171*> \par Further Details:
172* =====================
173*>
174*> \verbatim
175*>
176*> Level 3 Blas routine.
177*>
178*> -- Written on 8-February-1989.
179*> Jack Dongarra, Argonne National Laboratory.
180*> Iain Duff, AERE Harwell.
181*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
182*> Sven Hammarling, Numerical Algorithms Group Ltd.
183*> \endverbatim
184*>
185* =====================================================================
186 SUBROUTINE dgemm(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
187*
188* -- Reference BLAS level3 routine --
189* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
190* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
191*
192* .. Scalar Arguments ..
193 DOUBLE PRECISION ALPHA,BETA
194 INTEGER K,LDA,LDB,LDC,M,N
195 CHARACTER TRANSA,TRANSB
196* ..
197* .. Array Arguments ..
198 DOUBLE PRECISION A(LDA,*),B(LDB,*),C(LDC,*)
199* ..
200*
201* =====================================================================
202*
203* .. External Functions ..
204 LOGICAL LSAME
205 EXTERNAL lsame
206* ..
207* .. External Subroutines ..
208 EXTERNAL xerbla
209* ..
210* .. Intrinsic Functions ..
211 INTRINSIC max
212* ..
213* .. Local Scalars ..
214 DOUBLE PRECISION TEMP
215 INTEGER I,INFO,J,L,NROWA,NROWB
216 LOGICAL NOTA,NOTB
217* ..
218* .. Parameters ..
219 DOUBLE PRECISION ONE,ZERO
220 parameter(one=1.0d+0,zero=0.0d+0)
221* ..
222*
223* Set NOTA and NOTB as true if A and B respectively are not
224* transposed and set NROWA and NROWB as the number of rows of A
225* and B respectively.
226*
227 nota = lsame(transa,'N')
228 notb = lsame(transb,'N')
229 IF (nota) THEN
230 nrowa = m
231 ELSE
232 nrowa = k
233 END IF
234 IF (notb) THEN
235 nrowb = k
236 ELSE
237 nrowb = n
238 END IF
239*
240* Test the input parameters.
241*
242 info = 0
243 IF ((.NOT.nota) .AND. (.NOT.lsame(transa,'C')) .AND.
244 + (.NOT.lsame(transa,'T'))) THEN
245 info = 1
246 ELSE IF ((.NOT.notb) .AND. (.NOT.lsame(transb,'C')) .AND.
247 + (.NOT.lsame(transb,'T'))) THEN
248 info = 2
249 ELSE IF (m.LT.0) THEN
250 info = 3
251 ELSE IF (n.LT.0) THEN
252 info = 4
253 ELSE IF (k.LT.0) THEN
254 info = 5
255 ELSE IF (lda.LT.max(1,nrowa)) THEN
256 info = 8
257 ELSE IF (ldb.LT.max(1,nrowb)) THEN
258 info = 10
259 ELSE IF (ldc.LT.max(1,m)) THEN
260 info = 13
261 END IF
262 IF (info.NE.0) THEN
263 CALL xerbla('DGEMM ',info)
264 RETURN
265 END IF
266*
267* Quick return if possible.
268*
269 IF ((m.EQ.0) .OR. (n.EQ.0) .OR.
270 + (((alpha.EQ.zero).OR. (k.EQ.0)).AND. (beta.EQ.one))) RETURN
271*
272* And if alpha.eq.zero.
273*
274 IF (alpha.EQ.zero) THEN
275 IF (beta.EQ.zero) THEN
276 DO 20 j = 1,n
277 DO 10 i = 1,m
278 c(i,j) = zero
279 10 CONTINUE
280 20 CONTINUE
281 ELSE
282 DO 40 j = 1,n
283 DO 30 i = 1,m
284 c(i,j) = beta*c(i,j)
285 30 CONTINUE
286 40 CONTINUE
287 END IF
288 RETURN
289 END IF
290*
291* Start the operations.
292*
293 IF (notb) THEN
294 IF (nota) THEN
295*
296* Form C := alpha*A*B + beta*C.
297*
298 DO 90 j = 1,n
299 IF (beta.EQ.zero) THEN
300 DO 50 i = 1,m
301 c(i,j) = zero
302 50 CONTINUE
303 ELSE IF (beta.NE.one) THEN
304 DO 60 i = 1,m
305 c(i,j) = beta*c(i,j)
306 60 CONTINUE
307 END IF
308 DO 80 l = 1,k
309 temp = alpha*b(l,j)
310 DO 70 i = 1,m
311 c(i,j) = c(i,j) + temp*a(i,l)
312 70 CONTINUE
313 80 CONTINUE
314 90 CONTINUE
315 ELSE
316*
317* Form C := alpha*A**T*B + beta*C
318*
319 DO 120 j = 1,n
320 DO 110 i = 1,m
321 temp = zero
322 DO 100 l = 1,k
323 temp = temp + a(l,i)*b(l,j)
324 100 CONTINUE
325 IF (beta.EQ.zero) THEN
326 c(i,j) = alpha*temp
327 ELSE
328 c(i,j) = alpha*temp + beta*c(i,j)
329 END IF
330 110 CONTINUE
331 120 CONTINUE
332 END IF
333 ELSE
334 IF (nota) THEN
335*
336* Form C := alpha*A*B**T + beta*C
337*
338 DO 170 j = 1,n
339 IF (beta.EQ.zero) THEN
340 DO 130 i = 1,m
341 c(i,j) = zero
342 130 CONTINUE
343 ELSE IF (beta.NE.one) THEN
344 DO 140 i = 1,m
345 c(i,j) = beta*c(i,j)
346 140 CONTINUE
347 END IF
348 DO 160 l = 1,k
349 temp = alpha*b(j,l)
350 DO 150 i = 1,m
351 c(i,j) = c(i,j) + temp*a(i,l)
352 150 CONTINUE
353 160 CONTINUE
354 170 CONTINUE
355 ELSE
356*
357* Form C := alpha*A**T*B**T + beta*C
358*
359 DO 200 j = 1,n
360 DO 190 i = 1,m
361 temp = zero
362 DO 180 l = 1,k
363 temp = temp + a(l,i)*b(j,l)
364 180 CONTINUE
365 IF (beta.EQ.zero) THEN
366 c(i,j) = alpha*temp
367 ELSE
368 c(i,j) = alpha*temp + beta*c(i,j)
369 END IF
370 190 CONTINUE
371 200 CONTINUE
372 END IF
373 END IF
374*
375 RETURN
376*
377* End of DGEMM
378*
379 END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine dgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
DGEMM
Definition: dgemm.f:187