LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dorgqr.f
Go to the documentation of this file.
1*> \brief \b DORGQR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DORGQR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgqr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgqr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgqr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
22*
23* .. Scalar Arguments ..
24* INTEGER INFO, K, LDA, LWORK, M, N
25* ..
26* .. Array Arguments ..
27* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> DORGQR generates an M-by-N real matrix Q with orthonormal columns,
37*> which is defined as the first N columns of a product of K elementary
38*> reflectors of order M
39*>
40*> Q = H(1) H(2) . . . H(k)
41*>
42*> as returned by DGEQRF.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] M
49*> \verbatim
50*> M is INTEGER
51*> The number of rows of the matrix Q. M >= 0.
52*> \endverbatim
53*>
54*> \param[in] N
55*> \verbatim
56*> N is INTEGER
57*> The number of columns of the matrix Q. M >= N >= 0.
58*> \endverbatim
59*>
60*> \param[in] K
61*> \verbatim
62*> K is INTEGER
63*> The number of elementary reflectors whose product defines the
64*> matrix Q. N >= K >= 0.
65*> \endverbatim
66*>
67*> \param[in,out] A
68*> \verbatim
69*> A is DOUBLE PRECISION array, dimension (LDA,N)
70*> On entry, the i-th column must contain the vector which
71*> defines the elementary reflector H(i), for i = 1,2,...,k, as
72*> returned by DGEQRF in the first k columns of its array
73*> argument A.
74*> On exit, the M-by-N matrix Q.
75*> \endverbatim
76*>
77*> \param[in] LDA
78*> \verbatim
79*> LDA is INTEGER
80*> The first dimension of the array A. LDA >= max(1,M).
81*> \endverbatim
82*>
83*> \param[in] TAU
84*> \verbatim
85*> TAU is DOUBLE PRECISION array, dimension (K)
86*> TAU(i) must contain the scalar factor of the elementary
87*> reflector H(i), as returned by DGEQRF.
88*> \endverbatim
89*>
90*> \param[out] WORK
91*> \verbatim
92*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
93*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
94*> \endverbatim
95*>
96*> \param[in] LWORK
97*> \verbatim
98*> LWORK is INTEGER
99*> The dimension of the array WORK. LWORK >= max(1,N).
100*> For optimum performance LWORK >= N*NB, where NB is the
101*> optimal blocksize.
102*>
103*> If LWORK = -1, then a workspace query is assumed; the routine
104*> only calculates the optimal size of the WORK array, returns
105*> this value as the first entry of the WORK array, and no error
106*> message related to LWORK is issued by XERBLA.
107*> \endverbatim
108*>
109*> \param[out] INFO
110*> \verbatim
111*> INFO is INTEGER
112*> = 0: successful exit
113*> < 0: if INFO = -i, the i-th argument has an illegal value
114*> \endverbatim
115*
116* Authors:
117* ========
118*
119*> \author Univ. of Tennessee
120*> \author Univ. of California Berkeley
121*> \author Univ. of Colorado Denver
122*> \author NAG Ltd.
123*
124*> \ingroup ungqr
125*
126* =====================================================================
127 SUBROUTINE dorgqr( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
128*
129* -- LAPACK computational routine --
130* -- LAPACK is a software package provided by Univ. of Tennessee, --
131* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
132*
133* .. Scalar Arguments ..
134 INTEGER INFO, K, LDA, LWORK, M, N
135* ..
136* .. Array Arguments ..
137 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
138* ..
139*
140* =====================================================================
141*
142* .. Parameters ..
143 DOUBLE PRECISION ZERO
144 parameter( zero = 0.0d+0 )
145* ..
146* .. Local Scalars ..
147 LOGICAL LQUERY
148 INTEGER I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
149 $ LWKOPT, NB, NBMIN, NX
150* ..
151* .. External Subroutines ..
152 EXTERNAL dlarfb, dlarft, dorg2r, xerbla
153* ..
154* .. Intrinsic Functions ..
155 INTRINSIC max, min
156* ..
157* .. External Functions ..
158 INTEGER ILAENV
159 EXTERNAL ilaenv
160* ..
161* .. Executable Statements ..
162*
163* Test the input arguments
164*
165 info = 0
166 nb = ilaenv( 1, 'DORGQR', ' ', m, n, k, -1 )
167 lwkopt = max( 1, n )*nb
168 work( 1 ) = lwkopt
169 lquery = ( lwork.EQ.-1 )
170 IF( m.LT.0 ) THEN
171 info = -1
172 ELSE IF( n.LT.0 .OR. n.GT.m ) THEN
173 info = -2
174 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
175 info = -3
176 ELSE IF( lda.LT.max( 1, m ) ) THEN
177 info = -5
178 ELSE IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery ) THEN
179 info = -8
180 END IF
181 IF( info.NE.0 ) THEN
182 CALL xerbla( 'DORGQR', -info )
183 RETURN
184 ELSE IF( lquery ) THEN
185 RETURN
186 END IF
187*
188* Quick return if possible
189*
190 IF( n.LE.0 ) THEN
191 work( 1 ) = 1
192 RETURN
193 END IF
194*
195 nbmin = 2
196 nx = 0
197 iws = n
198 IF( nb.GT.1 .AND. nb.LT.k ) THEN
199*
200* Determine when to cross over from blocked to unblocked code.
201*
202 nx = max( 0, ilaenv( 3, 'DORGQR', ' ', m, n, k, -1 ) )
203 IF( nx.LT.k ) THEN
204*
205* Determine if workspace is large enough for blocked code.
206*
207 ldwork = n
208 iws = ldwork*nb
209 IF( lwork.LT.iws ) THEN
210*
211* Not enough workspace to use optimal NB: reduce NB and
212* determine the minimum value of NB.
213*
214 nb = lwork / ldwork
215 nbmin = max( 2, ilaenv( 2, 'DORGQR', ' ', m, n, k, -1 ) )
216 END IF
217 END IF
218 END IF
219*
220 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k ) THEN
221*
222* Use blocked code after the last block.
223* The first kk columns are handled by the block method.
224*
225 ki = ( ( k-nx-1 ) / nb )*nb
226 kk = min( k, ki+nb )
227*
228* Set A(1:kk,kk+1:n) to zero.
229*
230 DO 20 j = kk + 1, n
231 DO 10 i = 1, kk
232 a( i, j ) = zero
233 10 CONTINUE
234 20 CONTINUE
235 ELSE
236 kk = 0
237 END IF
238*
239* Use unblocked code for the last or only block.
240*
241 IF( kk.LT.n )
242 $ CALL dorg2r( m-kk, n-kk, k-kk, a( kk+1, kk+1 ), lda,
243 $ tau( kk+1 ), work, iinfo )
244*
245 IF( kk.GT.0 ) THEN
246*
247* Use blocked code
248*
249 DO 50 i = ki + 1, 1, -nb
250 ib = min( nb, k-i+1 )
251 IF( i+ib.LE.n ) THEN
252*
253* Form the triangular factor of the block reflector
254* H = H(i) H(i+1) . . . H(i+ib-1)
255*
256 CALL dlarft( 'Forward', 'Columnwise', m-i+1, ib,
257 $ a( i, i ), lda, tau( i ), work, ldwork )
258*
259* Apply H to A(i:m,i+ib:n) from the left
260*
261 CALL dlarfb( 'Left', 'No transpose', 'Forward',
262 $ 'Columnwise', m-i+1, n-i-ib+1, ib,
263 $ a( i, i ), lda, work, ldwork, a( i, i+ib ),
264 $ lda, work( ib+1 ), ldwork )
265 END IF
266*
267* Apply H to rows i:m of current block
268*
269 CALL dorg2r( m-i+1, ib, ib, a( i, i ), lda, tau( i ), work,
270 $ iinfo )
271*
272* Set rows 1:i-1 of current block to zero
273*
274 DO 40 j = i, i + ib - 1
275 DO 30 l = 1, i - 1
276 a( l, j ) = zero
277 30 CONTINUE
278 40 CONTINUE
279 50 CONTINUE
280 END IF
281*
282 work( 1 ) = iws
283 RETURN
284*
285* End of DORGQR
286*
287 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition dlarfb.f:197
subroutine dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition dlarft.f:163
subroutine dorg2r(m, n, k, a, lda, tau, work, info)
DORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf ...
Definition dorg2r.f:114
subroutine dorgqr(m, n, k, a, lda, tau, work, lwork, info)
DORGQR
Definition dorgqr.f:128