LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dorg2r()

subroutine dorg2r ( integer m,
integer n,
integer k,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) tau,
double precision, dimension( * ) work,
integer info )

DORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf (unblocked algorithm).

Download DORG2R + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DORG2R generates an m by n real matrix Q with orthonormal columns,
!> which is defined as the first n columns of a product of k elementary
!> reflectors of order m
!>
!>       Q  =  H(1) H(2) . . . H(k)
!>
!> as returned by DGEQRF.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix Q. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix Q. M >= N >= 0.
!> 
[in]K
!>          K is INTEGER
!>          The number of elementary reflectors whose product defines the
!>          matrix Q. N >= K >= 0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the i-th column must contain the vector which
!>          defines the elementary reflector H(i), for i = 1,2,...,k, as
!>          returned by DGEQRF in the first k columns of its array
!>          argument A.
!>          On exit, the m-by-n matrix Q.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The first dimension of the array A. LDA >= max(1,M).
!> 
[in]TAU
!>          TAU is DOUBLE PRECISION array, dimension (K)
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by DGEQRF.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument has an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 111 of file dorg2r.f.

112*
113* -- LAPACK computational routine --
114* -- LAPACK is a software package provided by Univ. of Tennessee, --
115* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117* .. Scalar Arguments ..
118 INTEGER INFO, K, LDA, M, N
119* ..
120* .. Array Arguments ..
121 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
122* ..
123*
124* =====================================================================
125*
126* .. Parameters ..
127 DOUBLE PRECISION ONE, ZERO
128 parameter( one = 1.0d+0, zero = 0.0d+0 )
129* ..
130* .. Local Scalars ..
131 INTEGER I, J, L
132* ..
133* .. External Subroutines ..
134 EXTERNAL dlarf1f, dscal, xerbla
135* ..
136* .. Intrinsic Functions ..
137 INTRINSIC max
138* ..
139* .. Executable Statements ..
140*
141* Test the input arguments
142*
143 info = 0
144 IF( m.LT.0 ) THEN
145 info = -1
146 ELSE IF( n.LT.0 .OR. n.GT.m ) THEN
147 info = -2
148 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
149 info = -3
150 ELSE IF( lda.LT.max( 1, m ) ) THEN
151 info = -5
152 END IF
153 IF( info.NE.0 ) THEN
154 CALL xerbla( 'DORG2R', -info )
155 RETURN
156 END IF
157*
158* Quick return if possible
159*
160 IF( n.LE.0 )
161 $ RETURN
162*
163* Initialise columns k+1:n to columns of the unit matrix
164*
165 DO 20 j = k + 1, n
166 DO 10 l = 1, m
167 a( l, j ) = zero
168 10 CONTINUE
169 a( j, j ) = one
170 20 CONTINUE
171*
172 DO 40 i = k, 1, -1
173*
174* Apply H(i) to A(i:m,i:n) from the left
175*
176 IF( i.LT.n ) THEN
177 CALL dlarf1f( 'Left', m-i+1, n-i, a( i, i ), 1, tau( i ),
178 $ a( i, i+1 ), lda, work )
179 END IF
180 IF( i.LT.m )
181 $ CALL dscal( m-i, -tau( i ), a( i+1, i ), 1 )
182 a( i, i ) = one - tau( i )
183*
184* Set A(1:i-1,i) to zero
185*
186 DO 30 l = 1, i - 1
187 a( l, i ) = zero
188 30 CONTINUE
189 40 CONTINUE
190 RETURN
191*
192* End of DORG2R
193*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlarf1f(side, m, n, v, incv, tau, c, ldc, work)
DLARF1F applies an elementary reflector to a general rectangular
Definition dlarf1f.f:157
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
Here is the call graph for this function:
Here is the caller graph for this function: