LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
complex16
Collaboration diagram for complex16:

Functions/Subroutines

program zchkaa
 ZCHKAA
program zchkab
 ZCHKAB
subroutine zchkeq (THRESH, NOUT)
 ZCHKEQ
subroutine zchkgb (DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, A, LA, AFAC, LAFAC, B, X, XACT, WORK, RWORK, IWORK, NOUT)
 ZCHKGB
subroutine zchkge (DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
 ZCHKGE
subroutine zchkgt (DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT)
 ZCHKGT
subroutine zchkhe (DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
 ZCHKHE
subroutine zchkhp (DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
 ZCHKHP
subroutine zchklq (DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC, B, X, XACT, TAU, WORK, RWORK, NOUT)
 ZCHKLQ
subroutine zchkpb (DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, NOUT)
 ZCHKPB
subroutine zchkpo (DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, NOUT)
 ZCHKPO
subroutine zchkpp (DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, NOUT)
 ZCHKPP
subroutine zchkps (DOTYPE, NN, NVAL, NNB, NBVAL, NRANK, RANKVAL, THRESH, TSTERR, NMAX, A, AFAC, PERM, PIV, WORK, RWORK, NOUT)
 ZCHKPS
subroutine zchkpt (DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, A, D, E, B, X, XACT, WORK, RWORK, NOUT)
 ZCHKPT
subroutine zchkq3 (DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, THRESH, A, COPYA, S, TAU, WORK, RWORK, IWORK, NOUT)
 ZCHKQ3
subroutine zchkql (DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC, B, X, XACT, TAU, WORK, RWORK, NOUT)
 ZCHKQL
subroutine zchkqp (DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A, COPYA, S, TAU, WORK, RWORK, IWORK, NOUT)
 ZCHKQP
subroutine zchkqr (DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AR, AC, B, X, XACT, TAU, WORK, RWORK, IWORK, NOUT)
 ZCHKQR
subroutine zchkqrt (THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB, NBVAL, NOUT)
 ZCHKQRT
subroutine zchkqrtp (THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB, NBVAL, NOUT)
 ZCHKQRTP
program zchkrfp
 ZCHKRFP
subroutine zchkrq (DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AR, AC, B, X, XACT, TAU, WORK, RWORK, IWORK, NOUT)
 ZCHKRQ
subroutine zchksp (DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
 ZCHKSP
subroutine zchksy (DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
 ZCHKSY
subroutine zchktb (DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, AB, AINV, B, X, XACT, WORK, RWORK, NOUT)
 ZCHKTB
subroutine zchktp (DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, AP, AINVP, B, X, XACT, WORK, RWORK, NOUT)
 ZCHKTP
subroutine zchktr (DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AINV, B, X, XACT, WORK, RWORK, NOUT)
 ZCHKTR
subroutine zchktz (DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR, A, COPYA, S, TAU, WORK, RWORK, NOUT)
 ZCHKTZ
subroutine zdrvab (DOTYPE, NM, MVAL, NNS, NSVAL, THRESH, NMAX, A, AFAC, B, X, WORK, RWORK, SWORK, IWORK, NOUT)
 ZDRVAB
subroutine zdrvac (DOTYPE, NM, MVAL, NNS, NSVAL, THRESH, NMAX, A, AFAC, B, X, WORK, RWORK, SWORK, NOUT)
 ZDRVAC
subroutine zdrvgb (DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA, AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, IWORK, NOUT)
 ZDRVGB
subroutine zdrvge (DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, IWORK, NOUT)
 ZDRVGE
subroutine zdrvgt (DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, AF, B, X, XACT, WORK, RWORK, IWORK, NOUT)
 ZDRVGT
subroutine zdrvhe (DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
 ZDRVHE
subroutine zdrvhp (DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
 ZDRVHP
subroutine zdrvls (DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB, NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B, COPYB, C, S, COPYS, WORK, RWORK, IWORK, NOUT)
 ZDRVLS
subroutine zdrvpb (DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, NOUT)
 ZDRVPB
subroutine zdrvpo (DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, NOUT)
 ZDRVPO
subroutine zdrvpp (DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, NOUT)
 ZDRVPP
subroutine zdrvpt (DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D, E, B, X, XACT, WORK, RWORK, NOUT)
 ZDRVPT
subroutine zdrvrf1 (NOUT, NN, NVAL, THRESH, A, LDA, ARF, WORK)
 ZDRVRF1
subroutine zdrvrf2 (NOUT, NN, NVAL, A, LDA, ARF, AP, ASAV)
 ZDRVRF2
subroutine zdrvrf3 (NOUT, NN, NVAL, THRESH, A, LDA, ARF, B1, B2, D_WORK_ZLANGE, Z_WORK_ZGEQRF, TAU)
 ZDRVRF3
subroutine zdrvrf4 (NOUT, NN, NVAL, THRESH, C1, C2, LDC, CRF, A, LDA, D_WORK_ZLANGE)
 ZDRVRF4
subroutine zdrvrfp (NOUT, NN, NVAL, NNS, NSVAL, NNT, NTVAL, THRESH, A, ASAV, AFAC, AINV, B, BSAV, XACT, X, ARF, ARFINV, Z_WORK_ZLATMS, Z_WORK_ZPOT02, Z_WORK_ZPOT03, D_WORK_ZLATMS, D_WORK_ZLANHE, D_WORK_ZPOT01, D_WORK_ZPOT02, D_WORK_ZPOT03)
 ZDRVRFP
subroutine zdrvsp (DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
 ZDRVSP
subroutine zdrvsy (DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
 ZDRVSY
subroutine zebchvxx (THRESH, PATH)
 ZEBCHVXX
subroutine zerrab (NUNIT)
 ZERRAB
subroutine zerrac (NUNIT)
 ZERRAC
subroutine zerrge (PATH, NUNIT)
 ZERRGE
subroutine zerrgt (PATH, NUNIT)
 ZERRGT
subroutine zerrhe (PATH, NUNIT)
 ZERRHE
subroutine zerrlq (PATH, NUNIT)
 ZERRLQ
subroutine zerrls (PATH, NUNIT)
 ZERRLS
subroutine zerrpo (PATH, NUNIT)
 ZERRPO
subroutine zerrps (PATH, NUNIT)
 ZERRPS
subroutine zerrql (PATH, NUNIT)
 ZERRQL
subroutine zerrqp (PATH, NUNIT)
 ZERRQP
subroutine zerrqr (PATH, NUNIT)
 ZERRQR
subroutine zerrqrt (PATH, NUNIT)
 ZERRQRT
subroutine zerrqrtp (PATH, NUNIT)
 ZERRQRTP
subroutine zerrrfp (NUNIT)
 ZERRRFP
subroutine zerrrq (PATH, NUNIT)
 ZERRRQ
subroutine zerrsy (PATH, NUNIT)
 ZERRSY
subroutine zerrtr (PATH, NUNIT)
 ZERRTR
subroutine zerrtz (PATH, NUNIT)
 ZERRTZ
subroutine zerrvx (PATH, NUNIT)
 ZERRVX
subroutine zgbt01 (M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK, RESID)
 ZGBT01
subroutine zgbt02 (TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, RESID)
 ZGBT02
subroutine zgbt05 (TRANS, N, KL, KU, NRHS, AB, LDAB, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
 ZGBT05
subroutine zgelqs (M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK, INFO)
 ZGELQS
LOGICAL function zgennd (M, N, A, LDA)
 ZGENND
subroutine zgeqls (M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK, INFO)
 ZGEQLS
subroutine zgeqrs (M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK, INFO)
 ZGEQRS
subroutine zgerqs (M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK, INFO)
 ZGERQS
subroutine zget01 (M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK, RESID)
 ZGET01
subroutine zget02 (TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
 ZGET02
subroutine zget03 (N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
 ZGET03
subroutine zget04 (N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
 ZGET04
subroutine zget07 (TRANS, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, CHKFERR, BERR, RESLTS)
 ZGET07
subroutine zget08 (TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
 ZGET08
subroutine zgtt01 (N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK, LDWORK, RWORK, RESID)
 ZGTT01
subroutine zgtt02 (TRANS, N, NRHS, DL, D, DU, X, LDX, B, LDB, RESID)
 ZGTT02
subroutine zgtt05 (TRANS, N, NRHS, DL, D, DU, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
 ZGTT05
subroutine zhet01 (UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
 ZHET01
subroutine zhpt01 (UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID)
 ZHPT01
subroutine zlahilb (N, NRHS, A, LDA, X, LDX, B, LDB, WORK, INFO, PATH)
 ZLAHILB
subroutine zlaipd (N, A, INDA, VINDA)
 ZLAIPD
subroutine zlaptm (UPLO, N, NRHS, ALPHA, D, E, X, LDX, BETA, B, LDB)
 ZLAPTM
subroutine zlarhs (PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
 ZLARHS
subroutine zlatb4 (PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
 ZLATB4
subroutine zlatb5 (PATH, IMAT, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
 ZLATB5
subroutine zlatsp (UPLO, N, X, ISEED)
 ZLATSP
subroutine zlatsy (UPLO, N, X, LDX, ISEED)
 ZLATSY
subroutine zlattb (IMAT, UPLO, TRANS, DIAG, ISEED, N, KD, AB, LDAB, B, WORK, RWORK, INFO)
 ZLATTB
subroutine zlattp (IMAT, UPLO, TRANS, DIAG, ISEED, N, AP, B, WORK, RWORK, INFO)
 ZLATTP
subroutine zlattr (IMAT, UPLO, TRANS, DIAG, ISEED, N, A, LDA, B, WORK, RWORK, INFO)
 ZLATTR
subroutine zlavhe (UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
 ZLAVHE
subroutine zlavhp (UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB, INFO)
 ZLAVHP
subroutine zlavsp (UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB, INFO)
 ZLAVSP
subroutine zlavsy (UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
 ZLAVSY
subroutine zlqt01 (M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZLQT01
subroutine zlqt02 (M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZLQT02
subroutine zlqt03 (M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZLQT03
subroutine zpbt01 (UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK, RESID)
 ZPBT01
subroutine zpbt02 (UPLO, N, KD, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
 ZPBT02
subroutine zpbt05 (UPLO, N, KD, NRHS, AB, LDAB, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
 ZPBT05
subroutine zpot01 (UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID)
 ZPOT01
subroutine zpot02 (UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
 ZPOT02
subroutine zpot03 (UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
 ZPOT03
subroutine zpot05 (UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
 ZPOT05
subroutine zpot06 (UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
 ZPOT06
subroutine zppt01 (UPLO, N, A, AFAC, RWORK, RESID)
 ZPPT01
subroutine zppt02 (UPLO, N, NRHS, A, X, LDX, B, LDB, RWORK, RESID)
 ZPPT02
subroutine zppt03 (UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND, RESID)
 ZPPT03
subroutine zppt05 (UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
 ZPPT05
subroutine zpst01 (UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM, PIV, RWORK, RESID, RANK)
 ZPST01
subroutine zptt01 (N, D, E, DF, EF, WORK, RESID)
 ZPTT01
subroutine zptt02 (UPLO, N, NRHS, D, E, X, LDX, B, LDB, RESID)
 ZPTT02
subroutine zptt05 (N, NRHS, D, E, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
 ZPTT05
subroutine zqlt01 (M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZQLT01
subroutine zqlt02 (M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZQLT02
subroutine zqlt03 (M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZQLT03
DOUBLE PRECISION function zqpt01 (M, N, K, A, AF, LDA, TAU, JPVT, WORK, LWORK)
 ZQPT01
subroutine zqrt01 (M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZQRT01
subroutine zqrt01p (M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZQRT01P
subroutine zqrt02 (M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZQRT02
subroutine zqrt03 (M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZQRT03
subroutine zqrt04 (M, N, NB, RESULT)
 ZQRT04
subroutine zqrt05 (M, N, L, NB, RESULT)
 ZQRT05
DOUBLE PRECISION function zqrt11 (M, K, A, LDA, TAU, WORK, LWORK)
 ZQRT11
DOUBLE PRECISION function zqrt12 (M, N, A, LDA, S, WORK, LWORK, RWORK)
 ZQRT12
subroutine zqrt13 (SCALE, M, N, A, LDA, NORMA, ISEED)
 ZQRT13
DOUBLE PRECISION function zqrt14 (TRANS, M, N, NRHS, A, LDA, X, LDX, WORK, LWORK)
 ZQRT14
subroutine zqrt15 (SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S, RANK, NORMA, NORMB, ISEED, WORK, LWORK)
 ZQRT15
subroutine zqrt16 (TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
 ZQRT16
DOUBLE PRECISION function zqrt17 (TRANS, IRESID, M, N, NRHS, A, LDA, X, LDX, B, LDB, C, WORK, LWORK)
 ZQRT17
subroutine zrqt01 (M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZRQT01
subroutine zrqt02 (M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZRQT02
subroutine zrqt03 (M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 ZRQT03
DOUBLE PRECISION function zrzt01 (M, N, A, AF, LDA, TAU, WORK, LWORK)
 ZRZT01
DOUBLE PRECISION function zrzt02 (M, N, AF, LDA, TAU, WORK, LWORK)
 ZRZT02
subroutine zsbmv (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
 ZSBMV
subroutine zspt01 (UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID)
 ZSPT01
subroutine zspt02 (UPLO, N, NRHS, A, X, LDX, B, LDB, RWORK, RESID)
 ZSPT02
subroutine zspt03 (UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND, RESID)
 ZSPT03
subroutine zsyt01 (UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
 ZSYT01
subroutine zsyt02 (UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
 ZSYT02
subroutine zsyt03 (UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
 ZSYT03
subroutine ztbt02 (UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, X, LDX, B, LDB, WORK, RWORK, RESID)
 ZTBT02
subroutine ztbt03 (UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID)
 ZTBT03
subroutine ztbt05 (UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
 ZTBT05
subroutine ztbt06 (RCOND, RCONDC, UPLO, DIAG, N, KD, AB, LDAB, RWORK, RAT)
 ZTBT06
subroutine ztpt01 (UPLO, DIAG, N, AP, AINVP, RCOND, RWORK, RESID)
 ZTPT01
subroutine ztpt02 (UPLO, TRANS, DIAG, N, NRHS, AP, X, LDX, B, LDB, WORK, RWORK, RESID)
 ZTPT02
subroutine ztpt03 (UPLO, TRANS, DIAG, N, NRHS, AP, SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID)
 ZTPT03
subroutine ztpt05 (UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
 ZTPT05
subroutine ztpt06 (RCOND, RCONDC, UPLO, DIAG, N, AP, RWORK, RAT)
 ZTPT06
subroutine ztrt01 (UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND, RWORK, RESID)
 ZTRT01
subroutine ztrt02 (UPLO, TRANS, DIAG, N, NRHS, A, LDA, X, LDX, B, LDB, WORK, RWORK, RESID)
 ZTRT02
subroutine ztrt03 (UPLO, TRANS, DIAG, N, NRHS, A, LDA, SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID)
 ZTRT03
subroutine ztrt05 (UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
 ZTRT05
subroutine ztrt06 (RCOND, RCONDC, UPLO, DIAG, N, A, LDA, RWORK, RAT)
 ZTRT06
DOUBLE PRECISION function ztzt01 (M, N, A, AF, LDA, TAU, WORK, LWORK)
 ZTZT01
DOUBLE PRECISION function ztzt02 (M, N, AF, LDA, TAU, WORK, LWORK)
 ZTZT02

Detailed Description

This is the group of complex16 LAPACK TESTING LIN routines.


Function/Subroutine Documentation

program zchkaa ( )

ZCHKAA

Purpose:
 ZCHKAA is the main test program for the COMPLEX*16 linear equation
 routines.

 The program must be driven by a short data file. The first 15 records
 (not including the first comment  line) specify problem dimensions
 and program options using list-directed input. The remaining lines
 specify the LAPACK test paths and the number of matrix types to use
 in testing.  An annotated example of a data file can be obtained by
 deleting the first 3 characters from the following 42 lines:
 Data file for testing COMPLEX*16 LAPACK linear equation routines
 7                      Number of values of M
 0 1 2 3 5 10 16        Values of M (row dimension)
 7                      Number of values of N
 0 1 2 3 5 10 16        Values of N (column dimension)
 1                      Number of values of NRHS
 2                      Values of NRHS (number of right hand sides)
 5                      Number of values of NB
 1 3 3 3 20             Values of NB (the blocksize)
 1 0 5 9 1              Values of NX (crossover point)
 3                      Number of values of RANK
 30 50 90               Values of rank (as a % of N)
 30.0                   Threshold value of test ratio
 T                      Put T to test the LAPACK routines
 T                      Put T to test the driver routines
 T                      Put T to test the error exits
 ZGE   11               List types on next line if 0 < NTYPES < 11
 ZGB    8               List types on next line if 0 < NTYPES <  8
 ZGT   12               List types on next line if 0 < NTYPES < 12
 ZPO    9               List types on next line if 0 < NTYPES <  9
 ZPS    9               List types on next line if 0 < NTYPES <  9
 ZPP    9               List types on next line if 0 < NTYPES <  9
 ZPB    8               List types on next line if 0 < NTYPES <  8
 ZPT   12               List types on next line if 0 < NTYPES < 12
 ZHE   10               List types on next line if 0 < NTYPES < 10
 ZHP   10               List types on next line if 0 < NTYPES < 10
 ZSY   11               List types on next line if 0 < NTYPES < 11
 ZSR   11               List types on next line if 0 < NTYPES < 11
 ZSP   11               List types on next line if 0 < NTYPES < 11
 ZTR   18               List types on next line if 0 < NTYPES < 18
 ZTP   18               List types on next line if 0 < NTYPES < 18
 ZTB   17               List types on next line if 0 < NTYPES < 17
 ZQR    8               List types on next line if 0 < NTYPES <  8
 ZRQ    8               List types on next line if 0 < NTYPES <  8
 ZLQ    8               List types on next line if 0 < NTYPES <  8
 ZQL    8               List types on next line if 0 < NTYPES <  8
 ZQP    6               List types on next line if 0 < NTYPES <  6
 ZTZ    3               List types on next line if 0 < NTYPES <  3
 ZLS    6               List types on next line if 0 < NTYPES <  6
 ZEQ
 ZQT
 ZQX
  NMAX    INTEGER
          The maximum allowable value for M and N.

  MAXIN   INTEGER
          The number of different values that can be used for each of
          M, N, NRHS, NB, NX and RANK

  MAXRHS  INTEGER
          The maximum number of right hand sides

  MATMAX  INTEGER
          The maximum number of matrix types to use for testing

  NIN     INTEGER
          The unit number for input

  NOUT    INTEGER
          The unit number for output
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012

Definition at line 109 of file zchkaa.f.

Here is the call graph for this function:

program zchkab ( )

ZCHKAB

Purpose:
 ZCHKAB is the test program for the COMPLEX*16 LAPACK
 ZCGESV/ZCPOSV routine

 The program must be driven by a short data file. The first 5 records
 specify problem dimensions and program options using list-directed
 input. The remaining lines specify the LAPACK test paths and the
 number of matrix types to use in testing.  An annotated example of a
 data file can be obtained by deleting the first 3 characters from the
 following 9 lines:
 Data file for testing COMPLEX*16 LAPACK ZCGESV
 7                      Number of values of M
 0 1 2 3 5 10 16        Values of M (row dimension)
 1                      Number of values of NRHS
 2                      Values of NRHS (number of right hand sides)
 20.0                   Threshold value of test ratio
 T                      Put T to test the LAPACK routine
 T                      Put T to test the error exits
 DGE    11              List types on next line if 0 < NTYPES < 11
 DPO    9               List types on next line if 0 < NTYPES <  9
  NMAX    INTEGER
          The maximum allowable value for N

  MAXIN   INTEGER
          The number of different values that can be used for each of
          M, N, NRHS, NB, and NX

  MAXRHS  INTEGER
          The maximum number of right hand sides

  NIN     INTEGER
          The unit number for input

  NOUT    INTEGER
          The unit number for output
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012

Definition at line 74 of file zchkab.f.

Here is the call graph for this function:

subroutine zchkeq ( double precision  THRESH,
integer  NOUT 
)

ZCHKEQ

Purpose:
 ZCHKEQ tests ZGEEQU, ZGBEQU, ZPOEQU, ZPPEQU and ZPBEQU
Parameters:
[in]THRESH
          THRESH is DOUBLE PRECISION
          Threshold for testing routines. Should be between 2 and 10.
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 55 of file zchkeq.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkgb ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
complex*16, dimension( * )  A,
integer  LA,
complex*16, dimension( * )  AFAC,
integer  LAFAC,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZCHKGB

Purpose:
 ZCHKGB tests ZGBTRF, -TRS, -RFS, and -CON
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NBVAL)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[out]A
          A is COMPLEX*16 array, dimension (LA)
[in]LA
          LA is INTEGER
          The length of the array A.  LA >= (KLMAX+KUMAX+1)*NMAX
          where KLMAX is the largest entry in the local array KLVAL,
                KUMAX is the largest entry in the local array KUVAL and
                NMAX is the largest entry in the input array NVAL.
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (LAFAC)
[in]LAFAC
          LAFAC is INTEGER
          The length of the array AFAC. LAFAC >= (2*KLMAX+KUMAX+1)*NMAX
          where KLMAX is the largest entry in the local array KLVAL,
                KUMAX is the largest entry in the local array KUVAL and
                NMAX is the largest entry in the input array NVAL.
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NSMAX,NMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(NMAX,2*NSMAX))
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 190 of file zchkgb.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkge ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZCHKGE

Purpose:
 ZCHKGE tests ZGETRF, -TRI, -TRS, -RFS, and -CON.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NBVAL)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for M or N, used in dimensioning
          the work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(2*NMAX,2*NSMAX+NWORK))
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 185 of file zchkge.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkgt ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AF,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZCHKGT

Purpose:
 ZCHKGT tests ZGTTRF, -TRS, -RFS, and -CON
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*4)
[out]AF
          AF is COMPLEX*16 array, dimension (NMAX*4)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(NMAX)+2*NSMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 147 of file zchkgt.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkhe ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZCHKHE

Purpose:
 ZCHKHE tests ZHETRF, -TRI2, -TRS, -TRS2, -RFS, and -CON.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NBVAL)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(NMAX,2*NSMAX))
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 172 of file zchkhe.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkhp ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZCHKHP

Purpose:
 ZCHKHP tests ZHPTRF, -TRI, -TRS, -RFS, and -CON
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]AINV
          AINV is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(2,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array,
                                 dimension (NMAX+2*NSMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 163 of file zchkhp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchklq ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer, dimension( * )  NXVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AF,
complex*16, dimension( * )  AQ,
complex*16, dimension( * )  AL,
complex*16, dimension( * )  AC,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  TAU,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZCHKLQ

Purpose:
 ZCHKLQ tests ZGELQF, ZUNGLQ and CUNMLQ.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB and NX contained in the
          vectors NBVAL and NXVAL.  The blocking parameters are used
          in pairs (NB,NX).
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NXVAL
          NXVAL is INTEGER array, dimension (NNB)
          The values of the crossover point NX.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for M or N, used in dimensioning
          the work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AF
          AF is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AQ
          AQ is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AL
          AL is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AC
          AC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]TAU
          TAU is COMPLEX*16 array, dimension (NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 195 of file zchklq.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkpb ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZCHKPB

Purpose:
 ZCHKPB tests ZPBTRF, -TRS, -RFS, and -CON.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NBVAL)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]AINV
          AINV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]B
          B is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is DOUBLE PRECISION array, dimension
                      (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(NMAX,2*NSMAX))
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 167 of file zchkpb.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkpo ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZCHKPO

Purpose:
 ZCHKPO tests ZPOTRF, -TRI, -TRS, -RFS, and -CON
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NBVAL)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (NMAX+2*NSMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 167 of file zchkpo.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkpp ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZCHKPP

Purpose:
 ZCHKPP tests ZPPTRF, -TRI, -TRS, -RFS, and -CON
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]AINV
          AINV is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(NMAX,2*NSMAX))
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 158 of file zchkpp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkps ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NRANK,
integer, dimension( * )  RANKVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  PERM,
integer, dimension( * )  PIV,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZCHKPS

Purpose:
 ZCHKPS tests ZPSTRF.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NBVAL)
          The values of the block size NB.
[in]NRANK
          NRANK is INTEGER
          The number of values of RANK contained in the vector RANKVAL.
[in]RANKVAL
          RANKVAL is INTEGER array, dimension (NBVAL)
          The values of the block size NB.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]PERM
          PERM is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]PIV
          PIV is INTEGER array, dimension (NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension (NMAX*3)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 153 of file zchkps.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkpt ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
complex*16, dimension( * )  A,
double precision, dimension( * )  D,
complex*16, dimension( * )  E,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZCHKPT

Purpose:
 ZCHKPT tests ZPTTRF, -TRS, -RFS, and -CON
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*2)
[out]D
          D is DOUBLE PRECISION array, dimension (NMAX*2)
[out]E
          E is COMPLEX*16 array, dimension (NMAX*2)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(NMAX,2*NSMAX))
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 147 of file zchkpt.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkq3 ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer, dimension( * )  NXVAL,
double precision  THRESH,
complex*16, dimension( * )  A,
complex*16, dimension( * )  COPYA,
double precision, dimension( * )  S,
complex*16, dimension( * )  TAU,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZCHKQ3

Purpose:
 ZCHKQ3 tests ZGEQP3.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB and NX contained in the
          vectors NBVAL and NXVAL.  The blocking parameters are used
          in pairs (NB,NX).
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NXVAL
          NXVAL is INTEGER array, dimension (NNB)
          The values of the crossover point NX.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[out]A
          A is COMPLEX*16 array, dimension (MMAX*NMAX)
          where MMAX is the maximum value of M in MVAL and NMAX is the
          maximum value of N in NVAL.
[out]COPYA
          COPYA is COMPLEX*16 array, dimension (MMAX*NMAX)
[out]S
          S is DOUBLE PRECISION array, dimension
                      (min(MMAX,NMAX))
[out]TAU
          TAU is COMPLEX*16 array, dimension (MMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (max(M*max(M,N) + 4*min(M,N) + max(M,N)))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (4*NMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (2*NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 157 of file zchkq3.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkql ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer, dimension( * )  NXVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AF,
complex*16, dimension( * )  AQ,
complex*16, dimension( * )  AL,
complex*16, dimension( * )  AC,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  TAU,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZCHKQL

Purpose:
 ZCHKQL tests ZGEQLF, ZUNGQL and CUNMQL.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB and NX contained in the
          vectors NBVAL and NXVAL.  The blocking parameters are used
          in pairs (NB,NX).
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NXVAL
          NXVAL is INTEGER array, dimension (NNB)
          The values of the crossover point NX.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for M or N, used in dimensioning
          the work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AF
          AF is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AQ
          AQ is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AL
          AL is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AC
          AC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]TAU
          TAU is COMPLEX*16 array, dimension (NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 195 of file zchkql.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkqp ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
double precision  THRESH,
logical  TSTERR,
complex*16, dimension( * )  A,
complex*16, dimension( * )  COPYA,
double precision, dimension( * )  S,
complex*16, dimension( * )  TAU,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZCHKQP

Purpose:
 ZCHKQP tests ZGEQPF.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[out]A
          A is COMPLEX*16 array, dimension (MMAX*NMAX)
          where MMAX is the maximum value of M in MVAL and NMAX is the
          maximum value of N in NVAL.
[out]COPYA
          COPYA is COMPLEX*16 array, dimension (MMAX*NMAX)
[out]S
          S is DOUBLE PRECISION array, dimension
                      (min(MMAX,NMAX))
[out]TAU
          TAU is COMPLEX*16 array, dimension (MMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (max(M*max(M,N) + 4*min(M,N) + max(M,N)))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (4*NMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 143 of file zchkqp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkqr ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer, dimension( * )  NXVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AF,
complex*16, dimension( * )  AQ,
complex*16, dimension( * )  AR,
complex*16, dimension( * )  AC,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  TAU,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZCHKQR

Purpose:
 ZCHKQR tests ZGEQRF, ZUNGQR and CUNMQR.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB and NX contained in the
          vectors NBVAL and NXVAL.  The blocking parameters are used
          in pairs (NB,NX).
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NXVAL
          NXVAL is INTEGER array, dimension (NNB)
          The values of the crossover point NX.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for M or N, used in dimensioning
          the work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AF
          AF is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AQ
          AQ is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AR
          AR is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AC
          AC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]TAU
          TAU is COMPLEX*16 array, dimension (NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 200 of file zchkqr.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkqrt ( double precision  THRESH,
logical  TSTERR,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NOUT 
)

ZCHKQRT

Purpose:
 ZCHKQRT tests ZGEQRT and ZGEMQRT.
Parameters:
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NBVAL)
          The values of the blocksize NB.
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 101 of file zchkqrt.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchkqrtp ( double precision  THRESH,
logical  TSTERR,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NOUT 
)

ZCHKQRTP

Purpose:
 ZCHKQRTP tests ZTPQRT and ZTPMQRT.
Parameters:
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NBVAL)
          The values of the blocksize NB.
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 102 of file zchkqrtp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

program zchkrfp ( )

ZCHKRFP

Purpose:
 ZCHKRFP is the main test program for the COMPLEX*16 linear equation
 routines with RFP storage format
  MAXIN   INTEGER
          The number of different values that can be used for each of
          M, N, or NB

  MAXRHS  INTEGER
          The maximum number of right hand sides

  NTYPES  INTEGER

  NMAX    INTEGER
          The maximum allowable value for N.

  NIN     INTEGER
          The unit number for input

  NOUT    INTEGER
          The unit number for output
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012

Definition at line 60 of file zchkrfp.f.

Here is the call graph for this function:

subroutine zchkrq ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer, dimension( * )  NXVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AF,
complex*16, dimension( * )  AQ,
complex*16, dimension( * )  AR,
complex*16, dimension( * )  AC,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  TAU,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZCHKRQ

Purpose:
 ZCHKRQ tests ZGERQF, ZUNGRQ and CUNMRQ.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB and NX contained in the
          vectors NBVAL and NXVAL.  The blocking parameters are used
          in pairs (NB,NX).
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NXVAL
          NXVAL is INTEGER array, dimension (NNB)
          The values of the crossover point NX.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for M or N, used in dimensioning
          the work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AF
          AF is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AQ
          AQ is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AR
          AR is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AC
          AC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]TAU
          TAU is COMPLEX*16 array, dimension (NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 200 of file zchkrq.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchksp ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZCHKSP

Purpose:
 ZCHKSP tests ZSPTRF, -TRI, -TRS, -RFS, and -CON
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]AINV
          AINV is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(2,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array,
                                 dimension (NMAX+2*NSMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 163 of file zchksp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchksy ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZCHKSY

Purpose:
 ZCHKSY tests ZSYTRF, -TRI2, -TRS, -TRS2,  -RFS, and -CON.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NBVAL)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(2,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array,
                                 dimension (NMAX+2*NSMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012

Definition at line 172 of file zchksy.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchktb ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  AB,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZCHKTB

Purpose:
 ZCHKTB tests ZTBTRS, -RFS, and -CON, and ZLATBS.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The leading dimension of the work arrays.
          NMAX >= the maximum value of N in NVAL.
[out]AB
          AB is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(NMAX,2*NSMAX))
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 149 of file zchktb.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchktp ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  AP,
complex*16, dimension( * )  AINVP,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZCHKTP

Purpose:
 ZCHKTP tests ZTPTRI, -TRS, -RFS, and -CON, and ZLATPS
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The leading dimension of the work arrays.  NMAX >= the
          maximumm value of N in NVAL.
[out]AP
          AP is COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2)
[out]AINVP
          AINVP is COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(NMAX,2*NSMAX))
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 150 of file zchktp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchktr ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZCHKTR

Purpose:
 ZCHKTR tests ZTRTRI, -TRS, -RFS, and -CON, and ZLATRS
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The leading dimension of the work arrays.
          NMAX >= the maximum value of N in NVAL.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(NMAX,2*NSMAX))
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 162 of file zchktr.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zchktz ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
double precision  THRESH,
logical  TSTERR,
complex*16, dimension( * )  A,
complex*16, dimension( * )  COPYA,
double precision, dimension( * )  S,
complex*16, dimension( * )  TAU,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZCHKTZ

Purpose:
 ZCHKTZ tests ZTZRQF and ZTZRZF.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[out]A
          A is COMPLEX*16 array, dimension (MMAX*NMAX)
          where MMAX is the maximum value of M in MVAL and NMAX is the
          maximum value of N in NVAL.
[out]COPYA
          COPYA is COMPLEX*16 array, dimension (MMAX*NMAX)
[out]S
          S is DOUBLE PRECISION array, dimension
                      (min(MMAX,NMAX))
[out]TAU
          TAU is COMPLEX*16 array, dimension (MMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (MMAX*NMAX + 4*NMAX + MMAX)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (2*NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 137 of file zchktz.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvab ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
complex, dimension( * )  SWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZDRVAB

Purpose:
 ZDRVAB tests ZCGESV
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for M or N, used in dimensioning
          the work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NSMAX*2))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      NMAX
[out]SWORK
          SWORK is COMPLEX array, dimension
                      (NMAX*(NSMAX+NMAX))
[out]IWORK
          IWORK is INTEGER array, dimension
                      NMAX
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 151 of file zdrvab.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvac ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
complex, dimension(*)  SWORK,
integer  NOUT 
)

ZDRVAC

Purpose:
 ZDRVAC tests ZCPOSV.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NM
          NM is INTEGER
          The number of values of N contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix dimension N.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(2*NMAX,2*NSMAX+NWORK))
[out]SWORK
          SWORK is COMPLEX array, dimension
                      (NMAX*(NSMAX+NMAX))
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 144 of file zdrvac.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvgb ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
complex*16, dimension( * )  A,
integer  LA,
complex*16, dimension( * )  AFB,
integer  LAFB,
complex*16, dimension( * )  ASAV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  BSAV,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
double precision, dimension( * )  S,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZDRVGB

ZDRVGBX

Purpose:
 ZDRVGB tests the driver routines ZGBSV and -SVX.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[out]A
          A is COMPLEX*16 array, dimension (LA)
[in]LA
          LA is INTEGER
          The length of the array A.  LA >= (2*NMAX-1)*NMAX
          where NMAX is the largest entry in NVAL.
[out]AFB
          AFB is COMPLEX*16 array, dimension (LAFB)
[in]LAFB
          LAFB is INTEGER
          The length of the array AFB.  LAFB >= (3*NMAX-2)*NMAX
          where NMAX is the largest entry in NVAL.
[out]ASAV
          ASAV is COMPLEX*16 array, dimension (LA)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]BSAV
          BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]S
          S is DOUBLE PRECISION array, dimension (2*NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NRHS,NMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(NMAX,2*NRHS))
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Purpose:
 ZDRVGB tests the driver routines ZGBSV, -SVX, and -SVXX.

 Note that this file is used only when the XBLAS are available,
 otherwise zdrvgb.f defines this subroutine.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[out]A
          A is COMPLEX*16 array, dimension (LA)
[in]LA
          LA is INTEGER
          The length of the array A.  LA >= (2*NMAX-1)*NMAX
          where NMAX is the largest entry in NVAL.
[out]AFB
          AFB is COMPLEX*16 array, dimension (LAFB)
[in]LAFB
          LAFB is INTEGER
          The length of the array AFB.  LAFB >= (3*NMAX-2)*NMAX
          where NMAX is the largest entry in NVAL.
[out]ASAV
          ASAV is COMPLEX*16 array, dimension (LA)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]BSAV
          BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]S
          S is DOUBLE PRECISION array, dimension (2*NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NRHS,NMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension
                      (max(NMAX,2*NRHS))
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 171 of file zdrvgb.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvge ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  ASAV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  BSAV,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
double precision, dimension( * )  S,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZDRVGE

ZDRVGEX

Purpose:
 ZDRVGE tests the driver routines ZGESV and -SVX.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]ASAV
          ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]BSAV
          BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]S
          S is DOUBLE PRECISION array, dimension (2*NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (2*NRHS+NMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Purpose:
 ZDRVGE tests the driver routines ZGESV, -SVX, and -SVXX.

 Note that this file is used only when the XBLAS are available,
 otherwise zdrvge.f defines this subroutine.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]ASAV
          ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]BSAV
          BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]S
          S is DOUBLE PRECISION array, dimension (2*NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (2*NRHS+NMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012

Definition at line 163 of file zdrvge.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvgt ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AF,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZDRVGT

Purpose:
 ZDRVGT tests ZGTSV and -SVX.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, NRHS >= 0.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*4)
[out]AF
          AF is COMPLEX*16 array, dimension (NMAX*4)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
[out]IWORK
          IWORK is INTEGER array, dimension (2*NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 139 of file zdrvgt.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvhe ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZDRVHE

ZDRVHEX

Purpose:
 ZDRVHE tests the driver routines ZHESV and -SVX.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(2,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Purpose:
 ZDRVHE tests the driver routines ZHESV, -SVX, and -SVXX.

 Note that this file is used only when the XBLAS are available,
 otherwise zdrvhe.f defines this subroutine.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(2,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (2*NMAX+2*NRHS)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012

Definition at line 153 of file zdrvhe.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvhp ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZDRVHP

Purpose:
 ZDRVHP tests the driver routines ZHPSV and -SVX.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]AINV
          AINV is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(2,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 156 of file zdrvhp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvls ( logical, dimension( * )  DOTYPE,
integer  NM,
integer, dimension( * )  MVAL,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer, dimension( * )  NXVAL,
double precision  THRESH,
logical  TSTERR,
complex*16, dimension( * )  A,
complex*16, dimension( * )  COPYA,
complex*16, dimension( * )  B,
complex*16, dimension( * )  COPYB,
complex*16, dimension( * )  C,
double precision, dimension( * )  S,
double precision, dimension( * )  COPYS,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZDRVLS

Purpose:
 ZDRVLS tests the least squares driver routines ZGELS, CGELSX, CGELSS,
 ZGELSY and CGELSD.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
          The matrix of type j is generated as follows:
          j=1: A = U*D*V where U and V are random unitary matrices
               and D has random entries (> 0.1) taken from a uniform
               distribution (0,1). A is full rank.
          j=2: The same of 1, but A is scaled up.
          j=3: The same of 1, but A is scaled down.
          j=4: A = U*D*V where U and V are random unitary matrices
               and D has 3*min(M,N)/4 random entries (> 0.1) taken
               from a uniform distribution (0,1) and the remaining
               entries set to 0. A is rank-deficient.
          j=5: The same of 4, but A is scaled up.
          j=6: The same of 5, but A is scaled down.
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB and NX contained in the
          vectors NBVAL and NXVAL.  The blocking parameters are used
          in pairs (NB,NX).
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NXVAL
          NXVAL is INTEGER array, dimension (NNB)
          The values of the crossover point NX.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[out]A
          A is COMPLEX*16 array, dimension (MMAX*NMAX)
          where MMAX is the maximum value of M in MVAL and NMAX is the
          maximum value of N in NVAL.
[out]COPYA
          COPYA is COMPLEX*16 array, dimension (MMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (MMAX*NSMAX)
          where MMAX is the maximum value of M in MVAL and NSMAX is the
          maximum value of NRHS in NSVAL.
[out]COPYB
          COPYB is COMPLEX*16 array, dimension (MMAX*NSMAX)
[out]C
          C is COMPLEX*16 array, dimension (MMAX*NSMAX)
[out]S
          S is DOUBLE PRECISION array, dimension
                      (min(MMAX,NMAX))
[out]COPYS
          COPYS is DOUBLE PRECISION array, dimension
                      (min(MMAX,NMAX))
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (MMAX*NMAX + 4*NMAX + MMAX).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (5*NMAX-1)
[out]IWORK
          IWORK is INTEGER array, dimension (15*NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 208 of file zdrvls.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvpb ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  ASAV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  BSAV,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
double precision, dimension( * )  S,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZDRVPB

Purpose:
 ZDRVPB tests the driver routines ZPBSV and -SVX.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]ASAV
          ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]BSAV
          BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]S
          S is DOUBLE PRECISION array, dimension (NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 158 of file zdrvpb.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvpo ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  ASAV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  BSAV,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
double precision, dimension( * )  S,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZDRVPO

ZDRVPOX

Purpose:
 ZDRVPO tests the driver routines ZPOSV and -SVX.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]ASAV
          ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]BSAV
          BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]S
          S is DOUBLE PRECISION array, dimension (NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Purpose:
 ZDRVPO tests the driver routines ZPOSV, -SVX, and -SVXX.

 Note that this file is used only when the XBLAS are available,
 otherwise zdrvpo.f defines this subroutine.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]ASAV
          ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]BSAV
          BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]S
          S is DOUBLE PRECISION array, dimension (NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 158 of file zdrvpo.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvpp ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  ASAV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  BSAV,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
double precision, dimension( * )  S,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZDRVPP

Purpose:
 ZDRVPP tests the driver routines ZPPSV and -SVX.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2)
[out]ASAV
          ASAV is COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]BSAV
          BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]S
          S is DOUBLE PRECISION array, dimension (NMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 158 of file zdrvpp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvpt ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
complex*16, dimension( * )  A,
double precision, dimension( * )  D,
complex*16, dimension( * )  E,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NOUT 
)

ZDRVPT

Purpose:
 ZDRVPT tests ZPTSV and -SVX.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*2)
[out]D
          D is DOUBLE PRECISION array, dimension (NMAX*2)
[out]E
          E is COMPLEX*16 array, dimension (NMAX*2)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(3,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 140 of file zdrvpt.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvrf1 ( integer  NOUT,
integer  NN,
integer, dimension( nn )  NVAL,
double precision  THRESH,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  ARF,
double precision, dimension( * )  WORK 
)

ZDRVRF1

Purpose:
 ZDRVRF1 tests the LAPACK RFP routines:
     ZLANHF.F
Parameters:
[in]NOUT
          NOUT is INTEGER
                The unit number for output.
[in]NN
          NN is INTEGER
                The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
                The values of the matrix dimension N.
[in]THRESH
          THRESH is DOUBLE PRECISION
                The threshold value for the test ratios.  A result is
                included in the output file if RESULT >= THRESH.  To have
                every test ratio printed, use THRESH = 0.
[out]A
          A is COMPLEX*16 array, dimension (LDA,NMAX)
[in]LDA
          LDA is INTEGER
                The leading dimension of the array A.  LDA >= max(1,NMAX).
[out]ARF
          ARF is COMPLEX*16 array, dimension ((NMAX*(NMAX+1))/2).
[out]WORK
          WORK is DOUBLE PRECISION array, dimension ( NMAX )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 96 of file zdrvrf1.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvrf2 ( integer  NOUT,
integer  NN,
integer, dimension( nn )  NVAL,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  ARF,
complex*16, dimension(*)  AP,
complex*16, dimension( lda, * )  ASAV 
)

ZDRVRF2

Purpose:
 ZDRVRF2 tests the LAPACK RFP convertion routines.
Parameters:
[in]NOUT
          NOUT is INTEGER
                The unit number for output.
[in]NN
          NN is INTEGER
                The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
                The values of the matrix dimension N.
[out]A
          A is COMPLEX*16 array, dimension (LDA,NMAX)
[in]LDA
          LDA is INTEGER
                The leading dimension of the array A.  LDA >= max(1,NMAX).
[out]ARF
          ARF is COMPLEX*16 array, dimension ((NMAX*(NMAX+1))/2).
[out]AP
          AP is COMPLEX*16 array, dimension ((NMAX*(NMAX+1))/2).
[out]ASAV
          ASAV is COMPLEX*16 array, dimension (LDA,NMAX)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 90 of file zdrvrf2.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvrf3 ( integer  NOUT,
integer  NN,
integer, dimension( nn )  NVAL,
double precision  THRESH,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  ARF,
complex*16, dimension( lda, * )  B1,
complex*16, dimension( lda, * )  B2,
double precision, dimension( * )  D_WORK_ZLANGE,
complex*16, dimension( * )  Z_WORK_ZGEQRF,
complex*16, dimension( * )  TAU 
)

ZDRVRF3

Purpose:
 ZDRVRF3 tests the LAPACK RFP routines:
     ZTFSM
Parameters:
[in]NOUT
          NOUT is INTEGER
                The unit number for output.
[in]NN
          NN is INTEGER
                The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
                The values of the matrix dimension N.
[in]THRESH
          THRESH is DOUBLE PRECISION
                The threshold value for the test ratios.  A result is
                included in the output file if RESULT >= THRESH.  To have
                every test ratio printed, use THRESH = 0.
[out]A
          A is COMPLEX*16 array, dimension (LDA,NMAX)
[in]LDA
          LDA is INTEGER
                The leading dimension of the array A.  LDA >= max(1,NMAX).
[out]ARF
          ARF is COMPLEX*16 array, dimension ((NMAX*(NMAX+1))/2).
[out]B1
          B1 is COMPLEX*16 array, dimension (LDA,NMAX)
[out]B2
          B2 is COMPLEX*16 array, dimension (LDA,NMAX)
[out]D_WORK_ZLANGE
          D_WORK_ZLANGE is DOUBLE PRECISION array, dimension (NMAX)
[out]Z_WORK_ZGEQRF
          Z_WORK_ZGEQRF is COMPLEX*16 array, dimension (NMAX)
[out]TAU
          TAU is COMPLEX*16 array, dimension (NMAX)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 119 of file zdrvrf3.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvrf4 ( integer  NOUT,
integer  NN,
integer, dimension( nn )  NVAL,
double precision  THRESH,
complex*16, dimension( ldc, * )  C1,
complex*16, dimension( ldc, *)  C2,
integer  LDC,
complex*16, dimension( * )  CRF,
complex*16, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( * )  D_WORK_ZLANGE 
)

ZDRVRF4

Purpose:
 ZDRVRF4 tests the LAPACK RFP routines:
     ZHFRK
Parameters:
[in]NOUT
          NOUT is INTEGER
                The unit number for output.
[in]NN
          NN is INTEGER
                The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
                The values of the matrix dimension N.
[in]THRESH
          THRESH is DOUBLE PRECISION
                The threshold value for the test ratios.  A result is
                included in the output file if RESULT >= THRESH.  To have
                every test ratio printed, use THRESH = 0.
[out]C1
          C1 is COMPLEX*16 array, dimension (LDC,NMAX)
[out]C2
          C2 is COMPLEX*16 array, dimension (LDC,NMAX)
[in]LDC
          LDC is INTEGER
                The leading dimension of the array A.  LDA >= max(1,NMAX).
[out]CRF
          CRF is COMPLEX*16 array, dimension ((NMAX*(NMAX+1))/2).
[out]A
          A is COMPLEX*16 array, dimension (LDA,NMAX)
[in]LDA
          LDA is INTEGER
                The leading dimension of the array A.  LDA >= max(1,NMAX).
[out]D_WORK_ZLANGE
          D_WORK_ZLANGE is DOUBLE PRECISION array, dimension (NMAX)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 114 of file zdrvrf4.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvrfp ( integer  NOUT,
integer  NN,
integer, dimension( nn )  NVAL,
integer  NNS,
integer, dimension( nns )  NSVAL,
integer  NNT,
integer, dimension( nnt )  NTVAL,
double precision  THRESH,
complex*16, dimension( * )  A,
complex*16, dimension( * )  ASAV,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  BSAV,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  X,
complex*16, dimension( * )  ARF,
complex*16, dimension( * )  ARFINV,
complex*16, dimension( * )  Z_WORK_ZLATMS,
complex*16, dimension( * )  Z_WORK_ZPOT02,
complex*16, dimension( * )  Z_WORK_ZPOT03,
double precision, dimension( * )  D_WORK_ZLATMS,
double precision, dimension( * )  D_WORK_ZLANHE,
double precision, dimension( * )  D_WORK_ZPOT01,
double precision, dimension( * )  D_WORK_ZPOT02,
double precision, dimension( * )  D_WORK_ZPOT03 
)

ZDRVRFP

Purpose:
 ZDRVRFP tests the LAPACK RFP routines:
     ZPFTRF, ZPFTRS, and ZPFTRI.

 This testing routine follow the same tests as ZDRVPO (test for the full
 format Symmetric Positive Definite solver).

 The tests are performed in Full Format, convertion back and forth from
 full format to RFP format are performed using the routines ZTRTTF and
 ZTFTTR.

 First, a specific matrix A of size N is created. There is nine types of 
 different matrixes possible.
  1. Diagonal                        6. Random, CNDNUM = sqrt(0.1/EPS)
  2. Random, CNDNUM = 2              7. Random, CNDNUM = 0.1/EPS
 *3. First row and column zero       8. Scaled near underflow
 *4. Last row and column zero        9. Scaled near overflow
 *5. Middle row and column zero
 (* - tests error exits from ZPFTRF, no test ratios are computed)
 A solution XACT of size N-by-NRHS is created and the associated right
 hand side B as well. Then ZPFTRF is called to compute L (or U), the
 Cholesky factor of A. Then L (or U) is used to solve the linear system
 of equations AX = B. This gives X. Then L (or U) is used to compute the
 inverse of A, AINV. The following four tests are then performed:
 (1) norm( L*L' - A ) / ( N * norm(A) * EPS ) or
     norm( U'*U - A ) / ( N * norm(A) * EPS ),
 (2) norm(B - A*X) / ( norm(A) * norm(X) * EPS ),
 (3) norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
 (4) ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ),
 where EPS is the machine precision, RCOND the condition number of A, and
 norm( . ) the 1-norm for (1,2,3) and the inf-norm for (4).
 Errors occur when INFO parameter is not as expected. Failures occur when
 a test ratios is greater than THRES.
Parameters:
[in]NOUT
          NOUT is INTEGER
                The unit number for output.
[in]NN
          NN is INTEGER
                The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
                The values of the matrix dimension N.
[in]NNS
          NNS is INTEGER
                The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
                The values of the number of right-hand sides NRHS.
[in]NNT
          NNT is INTEGER
                The number of values of MATRIX TYPE contained in the vector NTVAL.
[in]NTVAL
          NTVAL is INTEGER array, dimension (NNT)
                The values of matrix type (between 0 and 9 for PO/PP/PF matrices).
[in]THRESH
          THRESH is DOUBLE PRECISION
                The threshold value for the test ratios.  A result is
                included in the output file if RESULT >= THRESH.  To have
                every test ratio printed, use THRESH = 0.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]ASAV
          ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*MAXRHS)
[out]BSAV
          BSAV is COMPLEX*16 array, dimension (NMAX*MAXRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*MAXRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*MAXRHS)
[out]ARF
          ARF is COMPLEX*16 array, dimension ((NMAX*(NMAX+1))/2)
[out]ARFINV
          ARFINV is COMPLEX*16 array, dimension ((NMAX*(NMAX+1))/2)
[out]Z_WORK_ZLATMS
          Z_WORK_ZLATMS is COMPLEX*16 array, dimension ( 3*NMAX )
[out]Z_WORK_ZPOT02
          Z_WORK_ZPOT02 is COMPLEX*16 array, dimension ( NMAX*MAXRHS )
[out]Z_WORK_ZPOT03
          Z_WORK_ZPOT03 is COMPLEX*16 array, dimension ( NMAX*NMAX )
[out]D_WORK_ZLATMS
          D_WORK_ZLATMS is DOUBLE PRECISION array, dimension ( NMAX )
[out]D_WORK_ZLANHE
          D_WORK_ZLANHE is DOUBLE PRECISION array, dimension ( NMAX )
[out]D_WORK_ZPOT01
          D_WORK_ZPOT01 is DOUBLE PRECISION array, dimension ( NMAX )
[out]D_WORK_ZPOT02
          D_WORK_ZPOT02 is DOUBLE PRECISION array, dimension ( NMAX )
[out]D_WORK_ZPOT03
          D_WORK_ZPOT03 is DOUBLE PRECISION array, dimension ( NMAX )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 240 of file zdrvrfp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvsp ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZDRVSP

Purpose:
 ZDRVSP tests the driver routines ZSPSV and -SVX.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]AINV
          AINV is COMPLEX*16 array, dimension
                      (NMAX*(NMAX+1)/2)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(2,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 156 of file zdrvsp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zdrvsy ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NRHS,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZDRVSY

ZDRVSYX

Purpose:
 ZDRVSY tests the driver routines ZSYSV and -SVX.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(2,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Purpose:
 ZDRVSY tests the driver routines ZSYSV, -SVX, and -SVXX.

 Note that this file is used only when the XBLAS are available,
 otherwise zdrvsy.f defines this subroutine.
Parameters:
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
[out]WORK
          WORK is COMPLEX*16 array, dimension
                      (NMAX*max(2,NRHS))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (2*NMAX+2*NRHS)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012

Definition at line 153 of file zdrvsy.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zebchvxx ( double precision  THRESH,
character*3  PATH 
)

ZEBCHVXX

Purpose:

  ZEBCHVXX will run Z**SVXX on a series of Hilbert matrices and then
  compare the error bounds returned by Z**SVXX to see if the returned
  answer indeed falls within those bounds.

  Eight test ratios will be computed.  The tests will pass if they are .LT.
  THRESH.  There are two cases that are determined by 1 / (SQRT( N ) * EPS).
  If that value is .LE. to the component wise reciprocal condition number,
  it uses the guaranteed case, other wise it uses the unguaranteed case.

  Test ratios:
     Let Xc be X_computed and Xt be X_truth.
     The norm used is the infinity norm.

     Let A be the guaranteed case and B be the unguaranteed case.

       1. Normwise guaranteed forward error bound.
       A: norm ( abs( Xc - Xt ) / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ) and
          ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N),10) * EPS.
          If these conditions are met, the test ratio is set to be
          ERRBND( *, nwise_i, bnd_i ) / MAX(SQRT(N), 10).  Otherwise it is 1/EPS.
       B: For this case, CGESVXX should just return 1.  If it is less than
          one, treat it the same as in 1A.  Otherwise it fails. (Set test
          ratio to ERRBND( *, nwise_i, bnd_i ) * THRESH?)

       2. Componentwise guaranteed forward error bound.
       A: norm ( abs( Xc(j) - Xt(j) ) ) / norm (Xt(j)) .LE. ERRBND( *, cwise_i, bnd_i )
          for all j .AND. ERRBND( *, cwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS.
          If these conditions are met, the test ratio is set to be
          ERRBND( *, cwise_i, bnd_i ) / MAX(SQRT(N), 10).  Otherwise it is 1/EPS.
       B: Same as normwise test ratio.

       3. Backwards error.
       A: The test ratio is set to BERR/EPS.
       B: Same test ratio.

       4. Reciprocal condition number.
       A: A condition number is computed with Xt and compared with the one
          returned from CGESVXX.  Let RCONDc be the RCOND returned by CGESVXX
          and RCONDt be the RCOND from the truth value.  Test ratio is set to
          MAX(RCONDc/RCONDt, RCONDt/RCONDc).
       B: Test ratio is set to 1 / (EPS * RCONDc).

       5. Reciprocal normwise condition number.
       A: The test ratio is set to
          MAX(ERRBND( *, nwise_i, cond_i ) / NCOND, NCOND / ERRBND( *, nwise_i, cond_i )).
       B: Test ratio is set to 1 / (EPS * ERRBND( *, nwise_i, cond_i )).

       6. Reciprocal componentwise condition number.
       A: Test ratio is set to
          MAX(ERRBND( *, cwise_i, cond_i ) / CCOND, CCOND / ERRBND( *, cwise_i, cond_i )).
       B: Test ratio is set to 1 / (EPS * ERRBND( *, cwise_i, cond_i )).

     .. Parameters ..
     NMAX is determined by the largest number in the inverse of the hilbert
     matrix.  Precision is exhausted when the largest entry in it is greater
     than 2 to the power of the number of bits in the fraction of the data
     type used plus one, which is 24 for single precision.
     NMAX should be 6 for single and 11 for double.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 97 of file zebchvxx.f.

Here is the call graph for this function:

subroutine zerrab ( integer  NUNIT)

ZERRAB

Purpose:
 DERRAB tests the error exits for ZCGESV.
Parameters:
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 48 of file zerrab.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrac ( integer  NUNIT)

ZERRAC

Purpose:
 ZERRPX tests the error exits for ZCPOSV.
Parameters:
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 48 of file zerrac.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrge ( character*3  PATH,
integer  NUNIT 
)

ZERRGE

ZERRGEX

Purpose:
 ZERRGE tests the error exits for the COMPLEX*16 routines
 for general matrices.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Purpose:
 ZERRGE tests the error exits for the COMPLEX*16 routines
 for general matrices.

 Note that this file is used only when the XBLAS are available,
 otherwise zerrge.f defines this subroutine.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrge.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrgt ( character*3  PATH,
integer  NUNIT 
)

ZERRGT

Purpose:
 ZERRGT tests the error exits for the COMPLEX*16 tridiagonal
 routines.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrgt.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrhe ( character*3  PATH,
integer  NUNIT 
)

ZERRHE

ZERRHEX

Purpose:
 ZERRHE tests the error exits for the COMPLEX*16 routines
 for Hermitian indefinite matrices.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Purpose:
 ZERRHE tests the error exits for the COMPLEX*16 routines
 for Hermitian indefinite matrices.

 Note that this file is used only when the XBLAS are available,
 otherwise zerrhe.f defines this subroutine.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrhe.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrlq ( character*3  PATH,
integer  NUNIT 
)

ZERRLQ

Purpose:
 ZERRLQ tests the error exits for the COMPLEX*16 routines
 that use the LQ decomposition of a general matrix.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrlq.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrls ( character*3  PATH,
integer  NUNIT 
)

ZERRLS

Purpose:
 ZERRLS tests the error exits for the COMPLEX*16 least squares
 driver routines (ZGELS, CGELSS, CGELSX, CGELSY, CGELSD).
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrls.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrpo ( character*3  PATH,
integer  NUNIT 
)

ZERRPO

ZERRPOX

Purpose:
 ZERRPO tests the error exits for the COMPLEX*16 routines
 for Hermitian positive definite matrices.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Purpose:
 ZERRPO tests the error exits for the COMPLEX*16 routines
 for Hermitian positive definite matrices.

 Note that this file is used only when the XBLAS are available,
 otherwise zerrpo.f defines this subroutine.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrpo.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrps ( character*3  PATH,
integer  NUNIT 
)

ZERRPS

Purpose:
 ZERRPS tests the error exits for the COMPLEX routines
 for ZPSTRF.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrps.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrql ( character*3  PATH,
integer  NUNIT 
)

ZERRQL

Purpose:
 ZERRQL tests the error exits for the COMPLEX*16 routines
 that use the QL decomposition of a general matrix.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrql.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrqp ( character*3  PATH,
integer  NUNIT 
)

ZERRQP

Purpose:
 ZERRQP tests the error exits for ZGEQPF and CGEQP3.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 55 of file zerrqp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrqr ( character*3  PATH,
integer  NUNIT 
)

ZERRQR

Purpose:
 ZERRQR tests the error exits for the COMPLEX*16 routines
 that use the QR decomposition of a general matrix.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrqr.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrqrt ( character*3  PATH,
integer  NUNIT 
)

ZERRQRT

Purpose:
 ZERRQRT tests the error exits for the COMPLEX*16 routines
 that use the QRT decomposition of a general matrix.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrqrt.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrqrtp ( character*3  PATH,
integer  NUNIT 
)

ZERRQRTP

Purpose:
 ZERRQRTP tests the error exits for the COMPLEX*16 routines
 that use the QRT decomposition of a triangular-pentagonal matrix.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrqrtp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrrfp ( integer  NUNIT)

ZERRRFP

Purpose:
 ZERRRFP tests the error exits for the COMPLEX*16 driver routines
 for solving linear systems of equations.

 ZDRVRFP tests the COMPLEX*16 LAPACK RFP routines:
     ZTFSM, ZTFTRI, ZHFRK, ZTFTTP, ZTFTTR, ZPFTRF, ZPFTRS, ZTPTTF,
     ZTPTTR, ZTRTTF, and ZTRTTP
Parameters:
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 53 of file zerrrfp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrrq ( character*3  PATH,
integer  NUNIT 
)

ZERRRQ

Purpose:
 ZERRRQ tests the error exits for the COMPLEX*16 routines
 that use the RQ decomposition of a general matrix.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrrq.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrsy ( character*3  PATH,
integer  NUNIT 
)

ZERRSY

ZERRSYX

Purpose:
 ZERRSY tests the error exits for the COMPLEX*16 routines
 for symmetric indefinite matrices.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012
Purpose:
 ZERRSY tests the error exits for the COMPLEX*16 routines
 for symmetric indefinite matrices.

 Note that this file is used only when the XBLAS are available,
 otherwise zerrsy.f defines this subroutine.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrsy.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrtr ( character*3  PATH,
integer  NUNIT 
)

ZERRTR

Purpose:
 ZERRTR tests the error exits for the COMPLEX*16 triangular routines.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 55 of file zerrtr.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrtz ( character*3  PATH,
integer  NUNIT 
)

ZERRTZ

Purpose:
 ZERRTZ tests the error exits for ZTZRQF and ZTZRZF.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 55 of file zerrtz.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zerrvx ( character*3  PATH,
integer  NUNIT 
)

ZERRVX

ZERRVXX

Purpose:
 ZERRVX tests the error exits for the COMPLEX*16 driver routines
 for solving linear systems of equations.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012
Purpose:
 ZERRVX tests the error exits for the COMPLEX*16 driver routines
 for solving linear systems of equations.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 56 of file zerrvx.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zgbt01 ( integer  M,
integer  N,
integer  KL,
integer  KU,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldafac, * )  AFAC,
integer  LDAFAC,
integer, dimension( * )  IPIV,
complex*16, dimension( * )  WORK,
double precision  RESID 
)

ZGBT01

Purpose:
 ZGBT01 reconstructs a band matrix  A  from its L*U factorization and
 computes the residual:
    norm(L*U - A) / ( N * norm(A) * EPS ),
 where EPS is the machine epsilon.

 The expression L*U - A is computed one column at a time, so A and
 AFAC are not modified.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]KL
          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.
[in]KU
          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original matrix A in band storage, stored in rows 1 to
          KL+KU+1.
[in]LDA
          LDA is INTEGER.
          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
[in]AFAC
          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
          The factored form of the matrix A.  AFAC contains the banded
          factors L and U from the L*U factorization, as computed by
          ZGBTRF.  U is stored as an upper triangular band matrix with
          KL+KU superdiagonals in rows 1 to KL+KU+1, and the
          multipliers used during the factorization are stored in rows
          KL+KU+2 to 2*KL+KU+1.  See ZGBTRF for further details.
[in]LDAFAC
          LDAFAC is INTEGER
          The leading dimension of the array AFAC.
          LDAFAC >= max(1,2*KL*KU+1).
[in]IPIV
          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices from ZGBTRF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (2*KL+KU+1)
[out]RESID
          RESID is DOUBLE PRECISION
          norm(L*U - A) / ( N * norm(A) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 126 of file zgbt01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zgbt02 ( character  TRANS,
integer  M,
integer  N,
integer  KL,
integer  KU,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldb, * )  B,
integer  LDB,
double precision  RESID 
)

ZGBT02

Purpose:
 ZGBT02 computes the residual for a solution of a banded system of
 equations  A*x = b  or  A'*x = b:
    RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS).
 where EPS is the machine precision.
Parameters:
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A *x = b
          = 'T':  A'*x = b, where A' is the transpose of A
          = 'C':  A'*x = b, where A' is the transpose of A
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]KL
          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.
[in]KU
          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B.  NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original matrix A in band storage, stored in rows 1 to
          KL+KU+1.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors for the system of linear
          equations.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  If TRANS = 'N',
          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the right hand side vectors for the system of
          linear equations.
          On exit, B is overwritten with the difference B - A*X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  IF TRANS = 'N',
          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
[out]RESID
          RESID is DOUBLE PRECISION
          The maximum over the number of right hand sides of
          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 139 of file zgbt02.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zgbt05 ( character  TRANS,
integer  N,
integer  KL,
integer  KU,
integer  NRHS,
complex*16, dimension( ldab, * )  AB,
integer  LDAB,
complex*16, dimension( ldb, * )  B,
integer  LDB,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldxact, * )  XACT,
integer  LDXACT,
double precision, dimension( * )  FERR,
double precision, dimension( * )  BERR,
double precision, dimension( * )  RESLTS 
)

ZGBT05

Purpose:
 ZGBT05 tests the error bounds from iterative refinement for the
 computed solution to a system of equations op(A)*X = B, where A is a
 general band matrix of order n with kl subdiagonals and ku
 superdiagonals and op(A) = A or A**T, depending on TRANS.

 RESLTS(1) = test of the error bound
           = norm(X - XACT) / ( norm(X) * FERR )

 A large value is returned if this ratio is not less than one.

 RESLTS(2) = residual from the iterative refinement routine
           = the maximum of BERR / ( NZ*EPS + (*) ), where
             (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
             and NZ = max. number of nonzeros in any row of A, plus 1
Parameters:
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations.
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
[in]N
          N is INTEGER
          The number of rows of the matrices X, B, and XACT, and the
          order of the matrix A.  N >= 0.
[in]KL
          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.
[in]KU
          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of the matrices X, B, and XACT.
          NRHS >= 0.
[in]AB
          AB is COMPLEX*16 array, dimension (LDAB,N)
          The original band matrix A, stored in rows 1 to KL+KU+1.
          The j-th column of A is stored in the j-th column of the
          array AB as follows:
          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KL+KU+1.
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side vectors for the system of linear
          equations.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors.  Each vector is stored as a
          column of the matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in]XACT
          XACT is COMPLEX*16 array, dimension (LDX,NRHS)
          The exact solution vectors.  Each vector is stored as a
          column of the matrix XACT.
[in]LDXACT
          LDXACT is INTEGER
          The leading dimension of the array XACT.  LDXACT >= max(1,N).
[in]FERR
          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bounds for each solution vector
          X.  If XTRUE is the true solution, FERR bounds the magnitude
          of the largest entry in (X - XTRUE) divided by the magnitude
          of the largest entry in X.
[in]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector (i.e., the smallest relative change in any entry of A
          or B that makes X an exact solution).
[out]RESLTS
          RESLTS is DOUBLE PRECISION array, dimension (2)
          The maximum over the NRHS solution vectors of the ratios:
          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
          RESLTS(2) = BERR / ( NZ*EPS + (*) )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 176 of file zgbt05.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zgelqs ( integer  M,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( ldb, * )  B,
integer  LDB,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
integer  INFO 
)

ZGELQS

Purpose:
 Compute a minimum-norm solution
     min || A*X - B ||
 using the LQ factorization
     A = L*Q
 computed by ZGELQF.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= M >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B.  NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          Details of the LQ factorization of the original matrix A as
          returned by ZGELQF.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= M.
[in]TAU
          TAU is COMPLEX*16 array, dimension (M)
          Details of the orthogonal matrix Q.
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the m-by-nrhs right hand side matrix B.
          On exit, the n-by-nrhs solution matrix X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= N.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK must be at least NRHS,
          and should be at least NRHS*NB, where NB is the block size
          for this environment.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 121 of file zgelqs.f.

Here is the call graph for this function:

Here is the caller graph for this function:

LOGICAL function zgennd ( integer  M,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA 
)

ZGENND

Purpose:
    ZGENND tests that its argument has a real, non-negative diagonal.
Parameters:
[in]M
          M is INTEGER
          The number of rows in A.
[in]N
          N is INTEGER
          The number of columns in A.
[in]A
          A is COMPLEX*16 array, dimension (LDA, N)
          The matrix.
[in]LDA
          LDA is INTEGER
          Leading dimension of A.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 69 of file zgennd.f.

Here is the caller graph for this function:

subroutine zgeqls ( integer  M,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( ldb, * )  B,
integer  LDB,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
integer  INFO 
)

ZGEQLS

Purpose:
 Solve the least squares problem
     min || A*X - B ||
 using the QL factorization
     A = Q*L
 computed by ZGEQLF.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  M >= N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B.  NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          Details of the QL factorization of the original matrix A as
          returned by ZGEQLF.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= M.
[in]TAU
          TAU is COMPLEX*16 array, dimension (N)
          Details of the orthogonal matrix Q.
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the m-by-nrhs right hand side matrix B.
          On exit, the n-by-nrhs solution matrix X, stored in rows
          m-n+1:m.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= M.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK must be at least NRHS,
          and should be at least NRHS*NB, where NB is the block size
          for this environment.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 122 of file zgeqls.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zgeqrs ( integer  M,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( ldb, * )  B,
integer  LDB,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
integer  INFO 
)

ZGEQRS

Purpose:
 Solve the least squares problem
     min || A*X - B ||
 using the QR factorization
     A = Q*R
 computed by ZGEQRF.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  M >= N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B.  NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          Details of the QR factorization of the original matrix A as
          returned by ZGEQRF.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= M.
[in]TAU
          TAU is COMPLEX*16 array, dimension (N)
          Details of the orthogonal matrix Q.
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the m-by-nrhs right hand side matrix B.
          On exit, the n-by-nrhs solution matrix X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= M.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK must be at least NRHS,
          and should be at least NRHS*NB, where NB is the block size
          for this environment.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 121 of file zgeqrs.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zgerqs ( integer  M,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( ldb, * )  B,
integer  LDB,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
integer  INFO 
)

ZGERQS

Purpose:
 Compute a minimum-norm solution
     min || A*X - B ||
 using the RQ factorization
     A = R*Q
 computed by ZGERQF.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= M >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B.  NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          Details of the RQ factorization of the original matrix A as
          returned by ZGERQF.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= M.
[in]TAU
          TAU is COMPLEX*16 array, dimension (M)
          Details of the orthogonal matrix Q.
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the right hand side vectors for the linear system.
          On exit, the solution vectors X.  Each solution vector
          is contained in rows 1:N of a column of B.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,N).
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK must be at least NRHS,
          and should be at least NRHS*NB, where NB is the block size
          for this environment.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 122 of file zgerqs.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zget01 ( integer  M,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldafac, * )  AFAC,
integer  LDAFAC,
integer, dimension( * )  IPIV,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZGET01

Purpose:
 ZGET01 reconstructs a matrix A from its L*U factorization and
 computes the residual
    norm(L*U - A) / ( N * norm(A) * EPS ),
 where EPS is the machine epsilon.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original M x N matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[in,out]AFAC
          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
          The factored form of the matrix A.  AFAC contains the factors
          L and U from the L*U factorization as computed by ZGETRF.
          Overwritten with the reconstructed matrix, and then with the
          difference L*U - A.
[in]LDAFAC
          LDAFAC is INTEGER
          The leading dimension of the array AFAC.  LDAFAC >= max(1,M).
[in]IPIV
          IPIV is INTEGER array, dimension (N)
          The pivot indices from ZGETRF.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESID
          RESID is DOUBLE PRECISION
          norm(L*U - A) / ( N * norm(A) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 108 of file zget01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zget02 ( character  TRANS,
integer  M,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldb, * )  B,
integer  LDB,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZGET02

Purpose:
 ZGET02 computes the residual for a solution of a system of linear
 equations  A*x = b  or  A'*x = b:
    RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ),
 where EPS is the machine epsilon.
Parameters:
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A *x = b
          = 'T':  A^T*x = b, where A^T is the transpose of A
          = 'C':  A^H*x = b, where A^H is the conjugate transpose of A
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B, the matrix of right hand sides.
          NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original M x N matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors for the system of linear
          equations.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  If TRANS = 'N',
          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the right hand side vectors for the system of
          linear equations.
          On exit, B is overwritten with the difference B - A*X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  IF TRANS = 'N',
          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESID
          RESID is DOUBLE PRECISION
          The maximum over the number of right hand sides of
          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 133 of file zget02.f.

Here is the call graph for this function:

subroutine zget03 ( integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldainv, * )  AINV,
integer  LDAINV,
complex*16, dimension( ldwork, * )  WORK,
integer  LDWORK,
double precision, dimension( * )  RWORK,
double precision  RCOND,
double precision  RESID 
)

ZGET03

Purpose:
 ZGET03 computes the residual for a general matrix times its inverse:
    norm( I - AINV*A ) / ( N * norm(A) * norm(AINV) * EPS ),
 where EPS is the machine epsilon.
Parameters:
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original N x N matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]AINV
          AINV is COMPLEX*16 array, dimension (LDAINV,N)
          The inverse of the matrix A.
[in]LDAINV
          LDAINV is INTEGER
          The leading dimension of the array AINV.  LDAINV >= max(1,N).
[out]WORK
          WORK is COMPLEX*16 array, dimension (LDWORK,N)
[in]LDWORK
          LDWORK is INTEGER
          The leading dimension of the array WORK.  LDWORK >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RCOND
          RCOND is DOUBLE PRECISION
          The reciprocal of the condition number of A, computed as
          ( 1/norm(A) ) / norm(AINV).
[out]RESID
          RESID is DOUBLE PRECISION
          norm(I - AINV*A) / ( N * norm(A) * norm(AINV) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 110 of file zget03.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zget04 ( integer  N,
integer  NRHS,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldxact, * )  XACT,
integer  LDXACT,
double precision  RCOND,
double precision  RESID 
)

ZGET04

Purpose:
 ZGET04 computes the difference between a computed solution and the
 true solution to a system of linear equations.

 RESID =  ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ),
 where RCOND is the reciprocal of the condition number and EPS is the
 machine epsilon.
Parameters:
[in]N
          N is INTEGER
          The number of rows of the matrices X and XACT.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of the matrices X and XACT.  NRHS >= 0.
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors.  Each vector is stored as a
          column of the matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in]XACT
          XACT is COMPLEX*16 array, dimension (LDX,NRHS)
          The exact solution vectors.  Each vector is stored as a
          column of the matrix XACT.
[in]LDXACT
          LDXACT is INTEGER
          The leading dimension of the array XACT.  LDXACT >= max(1,N).
[in]RCOND
          RCOND is DOUBLE PRECISION
          The reciprocal of the condition number of the coefficient
          matrix in the system of equations.
[out]RESID
          RESID is DOUBLE PRECISION
          The maximum over the NRHS solution vectors of
          ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 103 of file zget04.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zget07 ( character  TRANS,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldb, * )  B,
integer  LDB,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldxact, * )  XACT,
integer  LDXACT,
double precision, dimension( * )  FERR,
logical  CHKFERR,
double precision, dimension( * )  BERR,
double precision, dimension( * )  RESLTS 
)

ZGET07

Purpose:
 ZGET07 tests the error bounds from iterative refinement for the
 computed solution to a system of equations op(A)*X = B, where A is a
 general n by n matrix and op(A) = A or A**T, depending on TRANS.

 RESLTS(1) = test of the error bound
           = norm(X - XACT) / ( norm(X) * FERR )

 A large value is returned if this ratio is not less than one.

 RESLTS(2) = residual from the iterative refinement routine
           = the maximum of BERR / ( (n+1)*EPS + (*) ), where
             (*) = (n+1)*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
Parameters:
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations.
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
[in]N
          N is INTEGER
          The number of rows of the matrices X and XACT.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of the matrices X and XACT.  NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original n by n matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side vectors for the system of linear
          equations.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors.  Each vector is stored as a
          column of the matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in]XACT
          XACT is COMPLEX*16 array, dimension (LDX,NRHS)
          The exact solution vectors.  Each vector is stored as a
          column of the matrix XACT.
[in]LDXACT
          LDXACT is INTEGER
          The leading dimension of the array XACT.  LDXACT >= max(1,N).
[in]FERR
          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bounds for each solution vector
          X.  If XTRUE is the true solution, FERR bounds the magnitude
          of the largest entry in (X - XTRUE) divided by the magnitude
          of the largest entry in X.
[in]CHKFERR
          CHKFERR is LOGICAL
          Set to .TRUE. to check FERR, .FALSE. not to check FERR.
          When the test system is ill-conditioned, the "true"
          solution in XACT may be incorrect.
[in]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector (i.e., the smallest relative change in any entry of A
          or B that makes X an exact solution).
[out]RESLTS
          RESLTS is DOUBLE PRECISION array, dimension (2)
          The maximum over the NRHS solution vectors of the ratios:
          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 166 of file zget07.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zget08 ( character  TRANS,
integer  M,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldb, * )  B,
integer  LDB,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZGET08

Purpose:
 ZGET08 computes the residual for a solution of a system of linear
 equations  A*x = b  or  A'*x = b:
    RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ),
 where EPS is the machine epsilon.
Parameters:
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A *x = b
          = 'T':  A^T*x = b, where A^T is the transpose of A
          = 'C':  A^H*x = b, where A^H is the conjugate transpose of A
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B, the matrix of right hand sides.
          NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original M x N matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors for the system of linear
          equations.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  If TRANS = 'N',
          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the right hand side vectors for the system of
          linear equations.
          On exit, B is overwritten with the difference B - A*X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  IF TRANS = 'N',
          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESID
          RESID is DOUBLE PRECISION
          The maximum over the number of right hand sides of
          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 133 of file zget08.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zgtt01 ( integer  N,
complex*16, dimension( * )  DL,
complex*16, dimension( * )  D,
complex*16, dimension( * )  DU,
complex*16, dimension( * )  DLF,
complex*16, dimension( * )  DF,
complex*16, dimension( * )  DUF,
complex*16, dimension( * )  DU2,
integer, dimension( * )  IPIV,
complex*16, dimension( ldwork, * )  WORK,
integer  LDWORK,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZGTT01

Purpose:
 ZGTT01 reconstructs a tridiagonal matrix A from its LU factorization
 and computes the residual
    norm(L*U - A) / ( norm(A) * EPS ),
 where EPS is the machine epsilon.
Parameters:
[in]N
          N is INTEGTER
          The order of the matrix A.  N >= 0.
[in]DL
          DL is COMPLEX*16 array, dimension (N-1)
          The (n-1) sub-diagonal elements of A.
[in]D
          D is COMPLEX*16 array, dimension (N)
          The diagonal elements of A.
[in]DU
          DU is COMPLEX*16 array, dimension (N-1)
          The (n-1) super-diagonal elements of A.
[in]DLF
          DLF is COMPLEX*16 array, dimension (N-1)
          The (n-1) multipliers that define the matrix L from the
          LU factorization of A.
[in]DF
          DF is COMPLEX*16 array, dimension (N)
          The n diagonal elements of the upper triangular matrix U from
          the LU factorization of A.
[in]DUF
          DUF is COMPLEX*16 array, dimension (N-1)
          The (n-1) elements of the first super-diagonal of U.
[in]DU2
          DU2 is COMPLEX*16 array, dimension (N-2)
          The (n-2) elements of the second super-diagonal of U.
[in]IPIV
          IPIV is INTEGER array, dimension (N)
          The pivot indices; for 1 <= i <= n, row i of the matrix was
          interchanged with row IPIV(i).  IPIV(i) will always be either
          i or i+1; IPIV(i) = i indicates a row interchange was not
          required.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LDWORK,N)
[in]LDWORK
          LDWORK is INTEGER
          The leading dimension of the array WORK.  LDWORK >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          The scaled residual:  norm(L*U - A) / (norm(A) * EPS)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 134 of file zgtt01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zgtt02 ( character  TRANS,
integer  N,
integer  NRHS,
complex*16, dimension( * )  DL,
complex*16, dimension( * )  D,
complex*16, dimension( * )  DU,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldb, * )  B,
integer  LDB,
double precision  RESID 
)

ZGTT02

Purpose:
 ZGTT02 computes the residual for the solution to a tridiagonal
 system of equations:
    RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS),
 where EPS is the machine epsilon.
Parameters:
[in]TRANS
          TRANS is CHARACTER
          Specifies the form of the residual.
          = 'N':  B - A * X     (No transpose)
          = 'T':  B - A**T * X  (Transpose)
          = 'C':  B - A**H * X  (Conjugate transpose)
[in]N
          N is INTEGTER
          The order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
[in]DL
          DL is COMPLEX*16 array, dimension (N-1)
          The (n-1) sub-diagonal elements of A.
[in]D
          D is COMPLEX*16 array, dimension (N)
          The diagonal elements of A.
[in]DU
          DU is COMPLEX*16 array, dimension (N-1)
          The (n-1) super-diagonal elements of A.
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the right hand side vectors for the system of
          linear equations.
          On exit, B is overwritten with the difference B - op(A)*X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]RESID
          RESID is DOUBLE PRECISION
          norm(B - op(A)*X) / (norm(A) * norm(X) * EPS)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 124 of file zgtt02.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zgtt05 ( character  TRANS,
integer  N,
integer  NRHS,
complex*16, dimension( * )  DL,
complex*16, dimension( * )  D,
complex*16, dimension( * )  DU,
complex*16, dimension( ldb, * )  B,
integer  LDB,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldxact, * )  XACT,
integer  LDXACT,
double precision, dimension( * )  FERR,
double precision, dimension( * )  BERR,
double precision, dimension( * )  RESLTS 
)

ZGTT05

Purpose:
 ZGTT05 tests the error bounds from iterative refinement for the
 computed solution to a system of equations A*X = B, where A is a
 general tridiagonal matrix of order n and op(A) = A or A**T,
 depending on TRANS.

 RESLTS(1) = test of the error bound
           = norm(X - XACT) / ( norm(X) * FERR )

 A large value is returned if this ratio is not less than one.

 RESLTS(2) = residual from the iterative refinement routine
           = the maximum of BERR / ( NZ*EPS + (*) ), where
             (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
             and NZ = max. number of nonzeros in any row of A, plus 1
Parameters:
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations.
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
[in]N
          N is INTEGER
          The number of rows of the matrices X and XACT.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of the matrices X and XACT.  NRHS >= 0.
[in]DL
          DL is COMPLEX*16 array, dimension (N-1)
          The (n-1) sub-diagonal elements of A.
[in]D
          D is COMPLEX*16 array, dimension (N)
          The diagonal elements of A.
[in]DU
          DU is COMPLEX*16 array, dimension (N-1)
          The (n-1) super-diagonal elements of A.
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side vectors for the system of linear
          equations.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors.  Each vector is stored as a
          column of the matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in]XACT
          XACT is COMPLEX*16 array, dimension (LDX,NRHS)
          The exact solution vectors.  Each vector is stored as a
          column of the matrix XACT.
[in]LDXACT
          LDXACT is INTEGER
          The leading dimension of the array XACT.  LDXACT >= max(1,N).
[in]FERR
          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bounds for each solution vector
          X.  If XTRUE is the true solution, FERR bounds the magnitude
          of the largest entry in (X - XTRUE) divided by the magnitude
          of the largest entry in X.
[in]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector (i.e., the smallest relative change in any entry of A
          or B that makes X an exact solution).
[out]RESLTS
          RESLTS is DOUBLE PRECISION array, dimension (2)
          The maximum over the NRHS solution vectors of the ratios:
          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
          RESLTS(2) = BERR / ( NZ*EPS + (*) )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 165 of file zgtt05.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zhet01 ( character  UPLO,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldafac, * )  AFAC,
integer  LDAFAC,
integer, dimension( * )  IPIV,
complex*16, dimension( ldc, * )  C,
integer  LDC,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZHET01

Purpose:
 ZHET01 reconstructs a Hermitian indefinite matrix A from its
 block L*D*L' or U*D*U' factorization and computes the residual
    norm( C - A ) / ( N * norm(A) * EPS ),
 where C is the reconstructed matrix, EPS is the machine epsilon,
 L' is the conjugate transpose of L, and U' is the conjugate transpose
 of U.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original Hermitian matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N)
[in]AFAC
          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
          The factored form of the matrix A.  AFAC contains the block
          diagonal matrix D and the multipliers used to obtain the
          factor L or U from the block L*D*L' or U*D*U' factorization
          as computed by ZHETRF.
[in]LDAFAC
          LDAFAC is INTEGER
          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
[in]IPIV
          IPIV is INTEGER array, dimension (N)
          The pivot indices from ZHETRF.
[out]C
          C is COMPLEX*16 array, dimension (LDC,N)
[in]LDC
          LDC is INTEGER
          The leading dimension of the array C.  LDC >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 126 of file zhet01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zhpt01 ( character  UPLO,
integer  N,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
integer, dimension( * )  IPIV,
complex*16, dimension( ldc, * )  C,
integer  LDC,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZHPT01

Purpose:
 ZHPT01 reconstructs a Hermitian indefinite packed matrix A from its
 block L*D*L' or U*D*U' factorization and computes the residual
    norm( C - A ) / ( N * norm(A) * EPS ),
 where C is the reconstructed matrix, EPS is the machine epsilon,
 L' is the conjugate transpose of L, and U' is the conjugate transpose
 of U.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (N*(N+1)/2)
          The original Hermitian matrix A, stored as a packed
          triangular matrix.
[in]AFAC
          AFAC is COMPLEX*16 array, dimension (N*(N+1)/2)
          The factored form of the matrix A, stored as a packed
          triangular matrix.  AFAC contains the block diagonal matrix D
          and the multipliers used to obtain the factor L or U from the
          block L*D*L' or U*D*U' factorization as computed by ZHPTRF.
[in]IPIV
          IPIV is INTEGER array, dimension (N)
          The pivot indices from ZHPTRF.
[out]C
          C is COMPLEX*16 array, dimension (LDC,N)
[in]LDC
          LDC is INTEGER
          The leading dimension of the array C.  LDC >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 114 of file zhpt01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlahilb ( integer  N,
integer  NRHS,
complex*16, dimension(lda,n)  A,
integer  LDA,
complex*16, dimension(ldx, nrhs)  X,
integer  LDX,
complex*16, dimension(ldb, nrhs)  B,
integer  LDB,
double precision, dimension(n)  WORK,
integer  INFO,
character*3  PATH 
)

ZLAHILB

Purpose:
 ZLAHILB generates an N by N scaled Hilbert matrix in A along with
 NRHS right-hand sides in B and solutions in X such that A*X=B.

 The Hilbert matrix is scaled by M = LCM(1, 2, ..., 2*N-1) so that all
 entries are integers.  The right-hand sides are the first NRHS
 columns of M * the identity matrix, and the solutions are the
 first NRHS columns of the inverse Hilbert matrix.

 The condition number of the Hilbert matrix grows exponentially with
 its size, roughly as O(e ** (3.5*N)).  Additionally, the inverse
 Hilbert matrices beyond a relatively small dimension cannot be
 generated exactly without extra precision.  Precision is exhausted
 when the largest entry in the inverse Hilbert matrix is greater than
 2 to the power of the number of bits in the fraction of the data type
 used plus one, which is 24 for single precision.

 In single, the generated solution is exact for N <= 6 and has
 small componentwise error for 7 <= N <= 11.
Parameters:
[in]N
          N is INTEGER
          The dimension of the matrix A.
[in]NRHS
          NRHS is NRHS
          The requested number of right-hand sides.
[out]A
          A is COMPLEX array, dimension (LDA, N)
          The generated scaled Hilbert matrix.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= N.
[out]X
          X is COMPLEX array, dimension (LDX, NRHS)
          The generated exact solutions.  Currently, the first NRHS
          columns of the inverse Hilbert matrix.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= N.
[out]B
          B is REAL array, dimension (LDB, NRHS)
          The generated right-hand sides.  Currently, the first NRHS
          columns of LCM(1, 2, ..., 2*N-1) * the identity matrix.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= N.
[out]WORK
          WORK is REAL array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          = 1: N is too large; the data is still generated but may not
               be not exact.
          < 0: if INFO = -i, the i-th argument had an illegal value
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 134 of file zlahilb.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlaipd ( integer  N,
complex*16, dimension( * )  A,
integer  INDA,
integer  VINDA 
)

ZLAIPD

Purpose:
 ZLAIPD sets the imaginary part of the diagonal elements of a complex
 matrix A to a large value.  This is used to test LAPACK routines for
 complex Hermitian matrices, which are not supposed to access or use
 the imaginary parts of the diagonals.
Parameters:
[in]N
          N is INTEGER
         The number of diagonal elements of A.
[in,out]A
          A is COMPLEX*16 array, dimension
                        (1+(N-1)*INDA+(N-2)*VINDA)
         On entry, the complex (Hermitian) matrix A.
         On exit, the imaginary parts of the diagonal elements are set
         to BIGNUM = EPS / SAFMIN, where EPS is the machine epsilon and
         SAFMIN is the safe minimum.
[in]INDA
          INDA is INTEGER
         The increment between A(1) and the next diagonal element of A.
         Typical values are
         = LDA+1:  square matrices with leading dimension LDA
         = 2:  packed upper triangular matrix, starting at A(1,1)
         = N:  packed lower triangular matrix, starting at A(1,1)
[in]VINDA
          VINDA is INTEGER
         The change in the diagonal increment between columns of A.
         Typical values are
         = 0:  no change, the row and column increments in A are fixed
         = 1:  packed upper triangular matrix
         = -1:  packed lower triangular matrix
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 84 of file zlaipd.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlaptm ( character  UPLO,
integer  N,
integer  NRHS,
double precision  ALPHA,
double precision, dimension( * )  D,
complex*16, dimension( * )  E,
complex*16, dimension( ldx, * )  X,
integer  LDX,
double precision  BETA,
complex*16, dimension( ldb, * )  B,
integer  LDB 
)

ZLAPTM

Purpose:
 ZLAPTM multiplies an N by NRHS matrix X by a Hermitian tridiagonal
 matrix A and stores the result in a matrix B.  The operation has the
 form

    B := alpha * A * X + beta * B

 where alpha may be either 1. or -1. and beta may be 0., 1., or -1.
Parameters:
[in]UPLO
          UPLO is CHARACTER
          Specifies whether the superdiagonal or the subdiagonal of the
          tridiagonal matrix A is stored.
          = 'U':  Upper, E is the superdiagonal of A.
          = 'L':  Lower, E is the subdiagonal of A.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices X and B.
[in]ALPHA
          ALPHA is DOUBLE PRECISION
          The scalar alpha.  ALPHA must be 1. or -1.; otherwise,
          it is assumed to be 0.
[in]D
          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the tridiagonal matrix A.
[in]E
          E is COMPLEX*16 array, dimension (N-1)
          The (n-1) subdiagonal or superdiagonal elements of A.
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The N by NRHS matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(N,1).
[in]BETA
          BETA is DOUBLE PRECISION
          The scalar beta.  BETA must be 0., 1., or -1.; otherwise,
          it is assumed to be 1.
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the N by NRHS matrix B.
          On exit, B is overwritten by the matrix expression
          B := alpha * A * X + beta * B.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(N,1).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 129 of file zlaptm.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlarhs ( character*3  PATH,
character  XTYPE,
character  UPLO,
character  TRANS,
integer  M,
integer  N,
integer  KL,
integer  KU,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldb, * )  B,
integer  LDB,
integer, dimension( 4 )  ISEED,
integer  INFO 
)

ZLARHS

Purpose:
 ZLARHS chooses a set of NRHS random solution vectors and sets
 up the right hand sides for the linear system
    op( A ) * X = B,
 where op( A ) may be A, A**T (transpose of A), or A**H (conjugate
 transpose of A).
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The type of the complex matrix A.  PATH may be given in any
          combination of upper and lower case.  Valid paths include
             xGE:  General m x n matrix
             xGB:  General banded matrix
             xPO:  Hermitian positive definite, 2-D storage
             xPP:  Hermitian positive definite packed
             xPB:  Hermitian positive definite banded
             xHE:  Hermitian indefinite, 2-D storage
             xHP:  Hermitian indefinite packed
             xHB:  Hermitian indefinite banded
             xSY:  Symmetric indefinite, 2-D storage
             xSP:  Symmetric indefinite packed
             xSB:  Symmetric indefinite banded
             xTR:  Triangular
             xTP:  Triangular packed
             xTB:  Triangular banded
             xQR:  General m x n matrix
             xLQ:  General m x n matrix
             xQL:  General m x n matrix
             xRQ:  General m x n matrix
          where the leading character indicates the precision.
[in]XTYPE
          XTYPE is CHARACTER*1
          Specifies how the exact solution X will be determined:
          = 'N':  New solution; generate a random X.
          = 'C':  Computed; use value of X on entry.
[in]UPLO
          UPLO is CHARACTER*1
          Used only if A is symmetric or triangular; specifies whether
          the upper or lower triangular part of the matrix A is stored.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]TRANS
          TRANS is CHARACTER*1
          Used only if A is nonsymmetric; specifies the operation
          applied to the matrix A.
          = 'N':  B := A    * X
          = 'T':  B := A**T * X
          = 'C':  B := A**H * X
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]KL
          KL is INTEGER
          Used only if A is a band matrix; specifies the number of
          subdiagonals of A if A is a general band matrix or if A is
          symmetric or triangular and UPLO = 'L'; specifies the number
          of superdiagonals of A if A is symmetric or triangular and
          UPLO = 'U'.  0 <= KL <= M-1.
[in]KU
          KU is INTEGER
          Used only if A is a general band matrix or if A is
          triangular.

          If PATH = xGB, specifies the number of superdiagonals of A,
          and 0 <= KU <= N-1.

          If PATH = xTR, xTP, or xTB, specifies whether or not the
          matrix has unit diagonal:
          = 1:  matrix has non-unit diagonal (default)
          = 2:  matrix has unit diagonal
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors in the system A*X = B.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The test matrix whose type is given by PATH.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.
          If PATH = xGB, LDA >= KL+KU+1.
          If PATH = xPB, xSB, xHB, or xTB, LDA >= KL+1.
          Otherwise, LDA >= max(1,M).
[in,out]X
          X is or output) COMPLEX*16 array, dimension (LDX,NRHS)
          On entry, if XTYPE = 'C' (for 'Computed'), then X contains
          the exact solution to the system of linear equations.
          On exit, if XTYPE = 'N' (for 'New'), then X is initialized
          with random values.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  If TRANS = 'N',
          LDX >= max(1,N); if TRANS = 'T', LDX >= max(1,M).
[out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side vector(s) for the system of equations,
          computed from B = op(A) * X, where op(A) is determined by
          TRANS.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  If TRANS = 'N',
          LDB >= max(1,M); if TRANS = 'T', LDB >= max(1,N).
[in,out]ISEED
          ISEED is INTEGER array, dimension (4)
          The seed vector for the random number generator (used in
          ZLATMS).  Modified on exit.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 209 of file zlarhs.f.

Here is the call graph for this function:

subroutine zlatb4 ( character*3  PATH,
integer  IMAT,
integer  M,
integer  N,
character  TYPE,
integer  KL,
integer  KU,
double precision  ANORM,
integer  MODE,
double precision  CNDNUM,
character  DIST 
)

ZLATB4

Purpose:
 ZLATB4 sets parameters for the matrix generator based on the type of
 matrix to be generated.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name.
[in]IMAT
          IMAT is INTEGER
          An integer key describing which matrix to generate for this
          path.
[in]M
          M is INTEGER
          The number of rows in the matrix to be generated.
[in]N
          N is INTEGER
          The number of columns in the matrix to be generated.
[out]TYPE
          TYPE is CHARACTER*1
          The type of the matrix to be generated:
          = 'S':  symmetric matrix
          = 'P':  symmetric positive (semi)definite matrix
          = 'N':  nonsymmetric matrix
[out]KL
          KL is INTEGER
          The lower band width of the matrix to be generated.
[out]KU
          KU is INTEGER
          The upper band width of the matrix to be generated.
[out]ANORM
          ANORM is DOUBLE PRECISION
          The desired norm of the matrix to be generated.  The diagonal
          matrix of singular values or eigenvalues is scaled by this
          value.
[out]MODE
          MODE is INTEGER
          A key indicating how to choose the vector of eigenvalues.
[out]CNDNUM
          CNDNUM is DOUBLE PRECISION
          The desired condition number.
[out]DIST
          DIST is CHARACTER*1
          The type of distribution to be used by the random number
          generator.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 120 of file zlatb4.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlatb5 ( character*3  PATH,
integer  IMAT,
integer  N,
character  TYPE,
integer  KL,
integer  KU,
double precision  ANORM,
integer  MODE,
double precision  CNDNUM,
character  DIST 
)

ZLATB5

Purpose:
 ZLATB5 sets parameters for the matrix generator based on the type
 of matrix to be generated.
Parameters:
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name.
[in]IMAT
          IMAT is INTEGER
          An integer key describing which matrix to generate for this
          path.
[in]N
          N is INTEGER
          The number of rows and columns in the matrix to be generated.
[out]TYPE
          TYPE is CHARACTER*1
          The type of the matrix to be generated:
          = 'S':  symmetric matrix
          = 'P':  symmetric positive (semi)definite matrix
          = 'N':  nonsymmetric matrix
[out]KL
          KL is INTEGER
          The lower band width of the matrix to be generated.
[out]KU
          KU is INTEGER
          The upper band width of the matrix to be generated.
[out]ANORM
          ANORM is DOUBLE PRECISION
          The desired norm of the matrix to be generated.  The diagonal
          matrix of singular values or eigenvalues is scaled by this
          value.
[out]MODE
          MODE is INTEGER
          A key indicating how to choose the vector of eigenvalues.
[out]CNDNUM
          CNDNUM is DOUBLE PRECISION
          The desired condition number.
[out]DIST
          DIST is CHARACTER*1
          The type of distribution to be used by the random number
          generator.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 114 of file zlatb5.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlatsp ( character  UPLO,
integer  N,
complex*16, dimension( * )  X,
integer, dimension( * )  ISEED 
)

ZLATSP

Purpose:
 ZLATSP generates a special test matrix for the complex symmetric
 (indefinite) factorization for packed matrices.  The pivot blocks of
 the generated matrix will be in the following order:
    2x2 pivot block, non diagonalizable
    1x1 pivot block
    2x2 pivot block, diagonalizable
    (cycle repeats)
 A row interchange is required for each non-diagonalizable 2x2 block.
Parameters:
[in]UPLO
          UPLO is CHARACTER
          Specifies whether the generated matrix is to be upper or
          lower triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The dimension of the matrix to be generated.
[out]X
          X is COMPLEX*16 array, dimension (N*(N+1)/2)
          The generated matrix in packed storage format.  The matrix
          consists of 3x3 and 2x2 diagonal blocks which result in the
          pivot sequence given above.  The matrix outside these
          diagonal blocks is zero.
[in,out]ISEED
          ISEED is INTEGER array, dimension (4)
          On entry, the seed for the random number generator.  The last
          of the four integers must be odd.  (modified on exit)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 85 of file zlatsp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlatsy ( character  UPLO,
integer  N,
complex*16, dimension( ldx, * )  X,
integer  LDX,
integer, dimension( * )  ISEED 
)

ZLATSY

Purpose:
 ZLATSY generates a special test matrix for the complex symmetric
 (indefinite) factorization.  The pivot blocks of the generated matrix
 will be in the following order:
    2x2 pivot block, non diagonalizable
    1x1 pivot block
    2x2 pivot block, diagonalizable
    (cycle repeats)
 A row interchange is required for each non-diagonalizable 2x2 block.
Parameters:
[in]UPLO
          UPLO is CHARACTER
          Specifies whether the generated matrix is to be upper or
          lower triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The dimension of the matrix to be generated.
[out]X
          X is COMPLEX*16 array, dimension (LDX,N)
          The generated matrix, consisting of 3x3 and 2x2 diagonal
          blocks which result in the pivot sequence given above.
          The matrix outside of these diagonal blocks is zero.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.
[in,out]ISEED
          ISEED is INTEGER array, dimension (4)
          On entry, the seed for the random number generator.  The last
          of the four integers must be odd.  (modified on exit)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 90 of file zlatsy.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlattb ( integer  IMAT,
character  UPLO,
character  TRANS,
character  DIAG,
integer, dimension( 4 )  ISEED,
integer  N,
integer  KD,
complex*16, dimension( ldab, * )  AB,
integer  LDAB,
complex*16, dimension( * )  B,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  INFO 
)

ZLATTB

Purpose:
 ZLATTB generates a triangular test matrix in 2-dimensional storage.
 IMAT and UPLO uniquely specify the properties of the test matrix,
 which is returned in the array A.
Parameters:
[in]IMAT
          IMAT is INTEGER
          An integer key describing which matrix to generate for this
          path.
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the matrix A will be upper or lower
          triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]TRANS
          TRANS is CHARACTER*1
          Specifies whether the matrix or its transpose will be used.
          = 'N':  No transpose
          = 'T':  Transpose
          = 'C':  Conjugate transpose (= transpose)
[out]DIAG
          DIAG is CHARACTER*1
          Specifies whether or not the matrix A is unit triangular.
          = 'N':  Non-unit triangular
          = 'U':  Unit triangular
[in,out]ISEED
          ISEED is INTEGER array, dimension (4)
          The seed vector for the random number generator (used in
          ZLATMS).  Modified on exit.
[in]N
          N is INTEGER
          The order of the matrix to be generated.
[in]KD
          KD is INTEGER
          The number of superdiagonals or subdiagonals of the banded
          triangular matrix A.  KD >= 0.
[out]AB
          AB is COMPLEX*16 array, dimension (LDAB,N)
          The upper or lower triangular banded matrix A, stored in the
          first KD+1 rows of AB.  Let j be a column of A, 1<=j<=n.
          If UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j.
          If UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
[out]B
          B is COMPLEX*16 array, dimension (N)
[out]WORK
          WORK is COMPLEX*16 array, dimension (2*N)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 141 of file zlattb.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlattp ( integer  IMAT,
character  UPLO,
character  TRANS,
character  DIAG,
integer, dimension( 4 )  ISEED,
integer  N,
complex*16, dimension( * )  AP,
complex*16, dimension( * )  B,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  INFO 
)

ZLATTP

Purpose:
 ZLATTP generates a triangular test matrix in packed storage.
 IMAT and UPLO uniquely specify the properties of the test matrix,
 which is returned in the array AP.
Parameters:
[in]IMAT
          IMAT is INTEGER
          An integer key describing which matrix to generate for this
          path.
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the matrix A will be upper or lower
          triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]TRANS
          TRANS is CHARACTER*1
          Specifies whether the matrix or its transpose will be used.
          = 'N':  No transpose
          = 'T':  Transpose
          = 'C':  Conjugate transpose
[out]DIAG
          DIAG is CHARACTER*1
          Specifies whether or not the matrix A is unit triangular.
          = 'N':  Non-unit triangular
          = 'U':  Unit triangular
[in,out]ISEED
          ISEED is INTEGER array, dimension (4)
          The seed vector for the random number generator (used in
          ZLATMS).  Modified on exit.
[in]N
          N is INTEGER
          The order of the matrix to be generated.
[out]AP
          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          The upper or lower triangular matrix A, packed columnwise in
          a linear array.  The j-th column of A is stored in the array
          AP as follows:
          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
          if UPLO = 'L',
             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
[out]B
          B is COMPLEX*16 array, dimension (N)
          The right hand side vector, if IMAT > 10.
[out]WORK
          WORK is COMPLEX*16 array, dimension (2*N)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 131 of file zlattp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlattr ( integer  IMAT,
character  UPLO,
character  TRANS,
character  DIAG,
integer, dimension( 4 )  ISEED,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  B,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  INFO 
)

ZLATTR

Purpose:
 ZLATTR generates a triangular test matrix in 2-dimensional storage.
 IMAT and UPLO uniquely specify the properties of the test matrix,
 which is returned in the array A.
Parameters:
[in]IMAT
          IMAT is INTEGER
          An integer key describing which matrix to generate for this
          path.
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the matrix A will be upper or lower
          triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]TRANS
          TRANS is CHARACTER*1
          Specifies whether the matrix or its transpose will be used.
          = 'N':  No transpose
          = 'T':  Transpose
          = 'C':  Conjugate transpose
[out]DIAG
          DIAG is CHARACTER*1
          Specifies whether or not the matrix A is unit triangular.
          = 'N':  Non-unit triangular
          = 'U':  Unit triangular
[in,out]ISEED
          ISEED is INTEGER array, dimension (4)
          The seed vector for the random number generator (used in
          ZLATMS).  Modified on exit.
[in]N
          N is INTEGER
          The order of the matrix to be generated.
[out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The triangular matrix A.  If UPLO = 'U', the leading N x N
          upper triangular part of the array A contains the upper
          triangular matrix, and the strictly lower triangular part of
          A is not referenced.  If UPLO = 'L', the leading N x N lower
          triangular part of the array A contains the lower triangular
          matrix and the strictly upper triangular part of A is not
          referenced.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]B
          B is COMPLEX*16 array, dimension (N)
          The right hand side vector, if IMAT > 10.
[out]WORK
          WORK is COMPLEX*16 array, dimension (2*N)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 138 of file zlattr.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlavhe ( character  UPLO,
character  TRANS,
character  DIAG,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
integer, dimension( * )  IPIV,
complex*16, dimension( ldb, * )  B,
integer  LDB,
integer  INFO 
)

ZLAVHE

Purpose:
    ZLAVHE  performs one of the matrix-vector operations
       x := A*x  or  x := A^H*x,
    where x is an N element vector and  A is one of the factors
    from the symmetric factorization computed by ZHETRF.
    ZHETRF produces a factorization of the form
         U * D * U^H     or     L * D * L^H,
    where U (or L) is a product of permutation and unit upper (lower)
    triangular matrices, U^H (or L^H) is the conjugate transpose of
    U (or L), and D is Hermitian and block diagonal with 1 x 1 and
    2 x 2 diagonal blocks.  The multipliers for the transformations
    and the upper or lower triangular parts of the diagonal blocks
    are stored in the leading upper or lower triangle of the 2-D
    array A.

    If TRANS = 'N' or 'n', ZLAVHE multiplies either by U or U * D
    (or L or L * D).
    If TRANS = 'C' or 'c', ZLAVHE multiplies either by U^H or D * U^H
    (or L^H or D * L^H ).
  UPLO   - CHARACTER*1
           On entry, UPLO specifies whether the triangular matrix
           stored in A is upper or lower triangular.
              UPLO = 'U' or 'u'   The matrix is upper triangular.
              UPLO = 'L' or 'l'   The matrix is lower triangular.
           Unchanged on exit.

  TRANS  - CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:
              TRANS = 'N' or 'n'   x := A*x.
              TRANS = 'C' or 'c'   x := A^H*x.
           Unchanged on exit.

  DIAG   - CHARACTER*1
           On entry, DIAG specifies whether the diagonal blocks are
           assumed to be unit matrices:
              DIAG = 'U' or 'u'   Diagonal blocks are unit matrices.
              DIAG = 'N' or 'n'   Diagonal blocks are non-unit.
           Unchanged on exit.

  N      - INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
           Unchanged on exit.

  NRHS   - INTEGER
           On entry, NRHS specifies the number of right hand sides,
           i.e., the number of vectors x to be multiplied by A.
           NRHS must be at least zero.
           Unchanged on exit.

  A      - COMPLEX*16 array, dimension( LDA, N )
           On entry, A contains a block diagonal matrix and the
           multipliers of the transformations used to obtain it,
           stored as a 2-D triangular matrix.
           Unchanged on exit.

  LDA    - INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling ( sub ) program. LDA must be at least
           max( 1, N ).
           Unchanged on exit.

  IPIV   - INTEGER array, dimension( N )
           On entry, IPIV contains the vector of pivot indices as
           determined by ZSYTRF or ZHETRF.
           If IPIV( K ) = K, no interchange was done.
           If IPIV( K ) <> K but IPIV( K ) > 0, then row K was inter-
           changed with row IPIV( K ) and a 1 x 1 pivot block was used.
           If IPIV( K ) < 0 and UPLO = 'U', then row K-1 was exchanged
           with row | IPIV( K ) | and a 2 x 2 pivot block was used.
           If IPIV( K ) < 0 and UPLO = 'L', then row K+1 was exchanged
           with row | IPIV( K ) | and a 2 x 2 pivot block was used.

  B      - COMPLEX*16 array, dimension( LDB, NRHS )
           On entry, B contains NRHS vectors of length N.
           On exit, B is overwritten with the product A * B.

  LDB    - INTEGER
           On entry, LDB contains the leading dimension of B as
           declared in the calling program.  LDB must be at least
           max( 1, N ).
           Unchanged on exit.

  INFO   - INTEGER
           INFO is the error flag.
           On exit, a value of 0 indicates a successful exit.
           A negative value, say -K, indicates that the K-th argument
           has an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 138 of file zlavhe.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlavhp ( character  UPLO,
character  TRANS,
character  DIAG,
integer  N,
integer  NRHS,
complex*16, dimension( * )  A,
integer, dimension( * )  IPIV,
complex*16, dimension( ldb, * )  B,
integer  LDB,
integer  INFO 
)

ZLAVHP

Purpose:
    ZLAVHP  performs one of the matrix-vector operations
       x := A*x  or  x := A^H*x,
    where x is an N element vector and  A is one of the factors
    from the symmetric factorization computed by ZHPTRF.
    ZHPTRF produces a factorization of the form
         U * D * U^H     or     L * D * L^H,
    where U (or L) is a product of permutation and unit upper (lower)
    triangular matrices, U^H (or L^H) is the conjugate transpose of
    U (or L), and D is Hermitian and block diagonal with 1 x 1 and
    2 x 2 diagonal blocks.  The multipliers for the transformations
    and the upper or lower triangular parts of the diagonal blocks
    are stored columnwise in packed format in the linear array A.

    If TRANS = 'N' or 'n', ZLAVHP multiplies either by U or U * D
    (or L or L * D).
    If TRANS = 'C' or 'c', ZLAVHP multiplies either by U^H or D * U^H
    (or L^H or D * L^H ).
  UPLO   - CHARACTER*1
           On entry, UPLO specifies whether the triangular matrix
           stored in A is upper or lower triangular.
              UPLO = 'U' or 'u'   The matrix is upper triangular.
              UPLO = 'L' or 'l'   The matrix is lower triangular.
           Unchanged on exit.

  TRANS  - CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:
              TRANS = 'N' or 'n'   x := A*x.
              TRANS = 'C' or 'c'   x := A^H*x.
           Unchanged on exit.

  DIAG   - CHARACTER*1
           On entry, DIAG specifies whether the diagonal blocks are
           assumed to be unit matrices, as follows:
              DIAG = 'U' or 'u'   Diagonal blocks are unit matrices.
              DIAG = 'N' or 'n'   Diagonal blocks are non-unit.
           Unchanged on exit.

  N      - INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
           Unchanged on exit.

  NRHS   - INTEGER
           On entry, NRHS specifies the number of right hand sides,
           i.e., the number of vectors x to be multiplied by A.
           NRHS must be at least zero.
           Unchanged on exit.

  A      - COMPLEX*16 array, dimension( N*(N+1)/2 )
           On entry, A contains a block diagonal matrix and the
           multipliers of the transformations used to obtain it,
           stored as a packed triangular matrix.
           Unchanged on exit.

  IPIV   - INTEGER array, dimension( N )
           On entry, IPIV contains the vector of pivot indices as
           determined by ZSPTRF or ZHPTRF.
           If IPIV( K ) = K, no interchange was done.
           If IPIV( K ) <> K but IPIV( K ) > 0, then row K was inter-
           changed with row IPIV( K ) and a 1 x 1 pivot block was used.
           If IPIV( K ) < 0 and UPLO = 'U', then row K-1 was exchanged
           with row | IPIV( K ) | and a 2 x 2 pivot block was used.
           If IPIV( K ) < 0 and UPLO = 'L', then row K+1 was exchanged
           with row | IPIV( K ) | and a 2 x 2 pivot block was used.

  B      - COMPLEX*16 array, dimension( LDB, NRHS )
           On entry, B contains NRHS vectors of length N.
           On exit, B is overwritten with the product A * B.

  LDB    - INTEGER
           On entry, LDB contains the leading dimension of B as
           declared in the calling program.  LDB must be at least
           max( 1, N ).
           Unchanged on exit.

  INFO   - INTEGER
           INFO is the error flag.
           On exit, a value of 0 indicates a successful exit.
           A negative value, say -K, indicates that the K-th argument
           has an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 131 of file zlavhp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlavsp ( character  UPLO,
character  TRANS,
character  DIAG,
integer  N,
integer  NRHS,
complex*16, dimension( * )  A,
integer, dimension( * )  IPIV,
complex*16, dimension( ldb, * )  B,
integer  LDB,
integer  INFO 
)

ZLAVSP

Purpose:
    ZLAVSP  performs one of the matrix-vector operations
       x := A*x  or  x := A^T*x,
    where x is an N element vector and  A is one of the factors
    from the symmetric factorization computed by ZSPTRF.
    ZSPTRF produces a factorization of the form
         U * D * U^T     or     L * D * L^T,
    where U (or L) is a product of permutation and unit upper (lower)
    triangular matrices, U^T (or L^T) is the transpose of
    U (or L), and D is symmetric and block diagonal with 1 x 1 and
    2 x 2 diagonal blocks.  The multipliers for the transformations
    and the upper or lower triangular parts of the diagonal blocks
    are stored columnwise in packed format in the linear array A.

    If TRANS = 'N' or 'n', ZLAVSP multiplies either by U or U * D
    (or L or L * D).
    If TRANS = 'C' or 'c', ZLAVSP multiplies either by U^T or D * U^T
    (or L^T or D * L^T ).
  UPLO   - CHARACTER*1
           On entry, UPLO specifies whether the triangular matrix
           stored in A is upper or lower triangular.
              UPLO = 'U' or 'u'   The matrix is upper triangular.
              UPLO = 'L' or 'l'   The matrix is lower triangular.
           Unchanged on exit.

  TRANS  - CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:
              TRANS = 'N' or 'n'   x := A*x.
              TRANS = 'T' or 't'   x := A^T*x.
           Unchanged on exit.

  DIAG   - CHARACTER*1
           On entry, DIAG specifies whether the diagonal blocks are
           assumed to be unit matrices, as follows:
              DIAG = 'U' or 'u'   Diagonal blocks are unit matrices.
              DIAG = 'N' or 'n'   Diagonal blocks are non-unit.
           Unchanged on exit.

  N      - INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
           Unchanged on exit.

  NRHS   - INTEGER
           On entry, NRHS specifies the number of right hand sides,
           i.e., the number of vectors x to be multiplied by A.
           NRHS must be at least zero.
           Unchanged on exit.

  A      - COMPLEX*16 array, dimension( N*(N+1)/2 )
           On entry, A contains a block diagonal matrix and the
           multipliers of the transformations used to obtain it,
           stored as a packed triangular matrix.
           Unchanged on exit.

  IPIV   - INTEGER array, dimension( N )
           On entry, IPIV contains the vector of pivot indices as
           determined by ZSPTRF.
           If IPIV( K ) = K, no interchange was done.
           If IPIV( K ) <> K but IPIV( K ) > 0, then row K was inter-
           changed with row IPIV( K ) and a 1 x 1 pivot block was used.
           If IPIV( K ) < 0 and UPLO = 'U', then row K-1 was exchanged
           with row | IPIV( K ) | and a 2 x 2 pivot block was used.
           If IPIV( K ) < 0 and UPLO = 'L', then row K+1 was exchanged
           with row | IPIV( K ) | and a 2 x 2 pivot block was used.

  B      - COMPLEX*16 array, dimension( LDB, NRHS )
           On entry, B contains NRHS vectors of length N.
           On exit, B is overwritten with the product A * B.

  LDB    - INTEGER
           On entry, LDB contains the leading dimension of B as
           declared in the calling program.  LDB must be at least
           max( 1, N ).
           Unchanged on exit.

  INFO   - INTEGER
           INFO is the error flag.
           On exit, a value of 0 indicates a successful exit.
           A negative value, say -K, indicates that the K-th argument
           has an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 131 of file zlavsp.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlavsy ( character  UPLO,
character  TRANS,
character  DIAG,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
integer, dimension( * )  IPIV,
complex*16, dimension( ldb, * )  B,
integer  LDB,
integer  INFO 
)

ZLAVSY

Purpose:
 ZLAVSY  performs one of the matrix-vector operations
    x := A*x  or  x := A'*x,
 where x is an N element vector and  A is one of the factors
 from the block U*D*U' or L*D*L' factorization computed by ZSYTRF.

 If TRANS = 'N', multiplies by U  or U * D  (or L  or L * D)
 If TRANS = 'T', multiplies by U' or D * U' (or L' or D * L')
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the factor stored in A is upper or lower
          triangular.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the operation to be performed:
          = 'N':  x := A*x
          = 'T':  x := A'*x
[in]DIAG
          DIAG is CHARACTER*1
          Specifies whether or not the diagonal blocks are unit
          matrices.  If the diagonal blocks are assumed to be unit,
          then A = U or A = L, otherwise A = U*D or A = L*D.
          = 'U':  Diagonal blocks are assumed to be unit matrices.
          = 'N':  Diagonal blocks are assumed to be non-unit matrices.
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of vectors
          x to be multiplied by A.  NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The block diagonal matrix D and the multipliers used to
          obtain the factor U or L as computed by ZSYTRF.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D,
          as determined by ZSYTRF or ZHETRF.

          If UPLO = 'U':
               If IPIV(k) > 0, then rows and columns k and IPIV(k)
               were interchanged and D(k,k) is a 1-by-1 diagonal block.
               (If IPIV( k ) = k, no interchange was done).

               If IPIV(k) = IPIV(k-1) < 0, then rows and
               columns k-1 and -IPIV(k) were interchanged,
               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.

          If UPLO = 'L':
               If IPIV(k) > 0, then rows and columns k and IPIV(k)
               were interchanged and D(k,k) is a 1-by-1 diagonal block.
               (If IPIV( k ) = k, no interchange was done).

               If IPIV(k) = IPIV(k+1) < 0, then rows and
               columns k+1 and -IPIV(k) were interchanged,
               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, B contains NRHS vectors of length N.
          On exit, B is overwritten with the product A * B.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012

Definition at line 152 of file zlavsy.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlqt01 ( integer  M,
integer  N,
complex*16, dimension( lda, * )  A,
complex*16, dimension( lda, * )  AF,
complex*16, dimension( lda, * )  Q,
complex*16, dimension( lda, * )  L,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( * )  RESULT 
)

ZLQT01

Purpose:
 ZLQT01 tests ZGELQF, which computes the LQ factorization of an m-by-n
 matrix A, and partially tests ZUNGLQ which forms the n-by-n
 orthogonal matrix Q.

 ZLQT01 compares L with A*Q', and checks that Q is orthogonal.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The m-by-n matrix A.
[out]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the LQ factorization of A, as returned by ZGELQF.
          See ZGELQF for further details.
[out]Q
          Q is COMPLEX*16 array, dimension (LDA,N)
          The n-by-n orthogonal matrix Q.
[out]L
          L is COMPLEX*16 array, dimension (LDA,max(M,N))
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A, AF, Q and L.
          LDA >= max(M,N).
[out]TAU
          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors, as returned
          by ZGELQF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (max(M,N))
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (2)
          The test ratios:
          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 126 of file zlqt01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlqt02 ( integer  M,
integer  N,
integer  K,
complex*16, dimension( lda, * )  A,
complex*16, dimension( lda, * )  AF,
complex*16, dimension( lda, * )  Q,
complex*16, dimension( lda, * )  L,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( * )  RESULT 
)

ZLQT02

Purpose:
 ZLQT02 tests ZUNGLQ, which generates an m-by-n matrix Q with
 orthonornmal rows that is defined as the product of k elementary
 reflectors.

 Given the LQ factorization of an m-by-n matrix A, ZLQT02 generates
 the orthogonal matrix Q defined by the factorization of the first k
 rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and
 checks that the rows of Q are orthonormal.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix Q to be generated.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix Q to be generated.
          N >= M >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. M >= K >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The m-by-n matrix A which was factorized by ZLQT01.
[in]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the LQ factorization of A, as returned by ZGELQF.
          See ZGELQF for further details.
[out]Q
          Q is COMPLEX*16 array, dimension (LDA,N)
[out]L
          L is COMPLEX*16 array, dimension (LDA,M)
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A, AF, Q and L. LDA >= N.
[in]TAU
          TAU is COMPLEX*16 array, dimension (M)
          The scalar factors of the elementary reflectors corresponding
          to the LQ factorization in AF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (2)
          The test ratios:
          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 135 of file zlqt02.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zlqt03 ( integer  M,
integer  N,
integer  K,
complex*16, dimension( lda, * )  AF,
complex*16, dimension( lda, * )  C,
complex*16, dimension( lda, * )  CC,
complex*16, dimension( lda, * )  Q,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( * )  RESULT 
)

ZLQT03

Purpose:
 ZLQT03 tests ZUNMLQ, which computes Q*C, Q'*C, C*Q or C*Q'.

 ZLQT03 compares the results of a call to ZUNMLQ with the results of
 forming Q explicitly by a call to ZUNGLQ and then performing matrix
 multiplication by a call to ZGEMM.
Parameters:
[in]M
          M is INTEGER
          The number of rows or columns of the matrix C; C is n-by-m if
          Q is applied from the left, or m-by-n if Q is applied from
          the right.  M >= 0.
[in]N
          N is INTEGER
          The order of the orthogonal matrix Q.  N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          orthogonal matrix Q.  N >= K >= 0.
[in]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the LQ factorization of an m-by-n matrix, as
          returned by ZGELQF. See CGELQF for further details.
[out]C
          C is COMPLEX*16 array, dimension (LDA,N)
[out]CC
          CC is COMPLEX*16 array, dimension (LDA,N)
[out]Q
          Q is COMPLEX*16 array, dimension (LDA,N)
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays AF, C, CC, and Q.
[in]TAU
          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors corresponding
          to the LQ factorization in AF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of WORK.  LWORK must be at least M, and should be
          M*NB, where NB is the blocksize for this environment.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (4)
          The test ratios compare two techniques for multiplying a
          random matrix C by an n-by-n orthogonal matrix Q.
          RESULT(1) = norm( Q*C - Q*C )  / ( N * norm(C) * EPS )
          RESULT(2) = norm( C*Q - C*Q )  / ( N * norm(C) * EPS )
          RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS )
          RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 136 of file zlqt03.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zpbt01 ( character  UPLO,
integer  N,
integer  KD,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldafac, * )  AFAC,
integer  LDAFAC,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZPBT01

Purpose:
 ZPBT01 reconstructs a Hermitian positive definite band matrix A from
 its L*L' or U'*U factorization and computes the residual
    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
    norm( U'*U - A ) / ( N * norm(A) * EPS ),
 where EPS is the machine epsilon, L' is the conjugate transpose of
 L, and U' is the conjugate transpose of U.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]KD
          KD is INTEGER
          The number of super-diagonals of the matrix A if UPLO = 'U',
          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original Hermitian band matrix A.  If UPLO = 'U', the
          upper triangular part of A is stored as a band matrix; if
          UPLO = 'L', the lower triangular part of A is stored.  The
          columns of the appropriate triangle are stored in the columns
          of A and the diagonals of the triangle are stored in the rows
          of A.  See ZPBTRF for further details.
[in]LDA
          LDA is INTEGER.
          The leading dimension of the array A.  LDA >= max(1,KD+1).
[in]AFAC
          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
          The factored form of the matrix A.  AFAC contains the factor
          L or U from the L*L' or U'*U factorization in band storage
          format, as computed by ZPBTRF.
[in]LDAFAC
          LDAFAC is INTEGER
          The leading dimension of the array AFAC.
          LDAFAC >= max(1,KD+1).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 120 of file zpbt01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zpbt02 ( character  UPLO,
integer  N,
integer  KD,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldb, * )  B,
integer  LDB,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZPBT02

Purpose:
 ZPBT02 computes the residual for a solution of a Hermitian banded
 system of equations  A*x = b:
    RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS)
 where EPS is the machine precision.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]KD
          KD is INTEGER
          The number of super-diagonals of the matrix A if UPLO = 'U',
          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides. NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original Hermitian band matrix A.  If UPLO = 'U', the
          upper triangular part of A is stored as a band matrix; if
          UPLO = 'L', the lower triangular part of A is stored.  The
          columns of the appropriate triangle are stored in the columns
          of A and the diagonals of the triangle are stored in the rows
          of A.  See ZPBTRF for further details.
[in]LDA
          LDA is INTEGER.
          The leading dimension of the array A.  LDA >= max(1,KD+1).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors for the system of linear
          equations.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.   LDX >= max(1,N).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the right hand side vectors for the system of
          linear equations.
          On exit, B is overwritten with the difference B - A*X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          The maximum over the number of right hand sides of
          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 136 of file zpbt02.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zpbt05 ( character  UPLO,
integer  N,
integer  KD,
integer  NRHS,
complex*16, dimension( ldab, * )  AB,
integer  LDAB,
complex*16, dimension( ldb, * )  B,
integer  LDB,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldxact, * )  XACT,
integer  LDXACT,
double precision, dimension( * )  FERR,
double precision, dimension( * )  BERR,
double precision, dimension( * )  RESLTS 
)

ZPBT05

Purpose:
 ZPBT05 tests the error bounds from iterative refinement for the
 computed solution to a system of equations A*X = B, where A is a
 Hermitian band matrix.

 RESLTS(1) = test of the error bound
           = norm(X - XACT) / ( norm(X) * FERR )

 A large value is returned if this ratio is not less than one.

 RESLTS(2) = residual from the iterative refinement routine
           = the maximum of BERR / ( NZ*EPS + (*) ), where
             (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
             and NZ = max. number of nonzeros in any row of A, plus 1
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows of the matrices X, B, and XACT, and the
          order of the matrix A.  N >= 0.
[in]KD
          KD is INTEGER
          The number of super-diagonals of the matrix A if UPLO = 'U',
          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of the matrices X, B, and XACT.
          NRHS >= 0.
[in]AB
          AB is COMPLEX*16 array, dimension (LDAB,N)
          The upper or lower triangle of the Hermitian band matrix A,
          stored in the first KD+1 rows of the array.  The j-th column
          of A is stored in the j-th column of the array AB as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD+1.
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side vectors for the system of linear
          equations.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors.  Each vector is stored as a
          column of the matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in]XACT
          XACT is COMPLEX*16 array, dimension (LDX,NRHS)
          The exact solution vectors.  Each vector is stored as a
          column of the matrix XACT.
[in]LDXACT
          LDXACT is INTEGER
          The leading dimension of the array XACT.  LDXACT >= max(1,N).
[in]FERR
          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bounds for each solution vector
          X.  If XTRUE is the true solution, FERR bounds the magnitude
          of the largest entry in (X - XTRUE) divided by the magnitude
          of the largest entry in X.
[in]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector (i.e., the smallest relative change in any entry of A
          or B that makes X an exact solution).
[out]RESLTS
          RESLTS is DOUBLE PRECISION array, dimension (2)
          The maximum over the NRHS solution vectors of the ratios:
          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
          RESLTS(2) = BERR / ( NZ*EPS + (*) )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 171 of file zpbt05.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zpot01 ( character  UPLO,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldafac, * )  AFAC,
integer  LDAFAC,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZPOT01

Purpose:
 ZPOT01 reconstructs a Hermitian positive definite matrix  A  from
 its L*L' or U'*U factorization and computes the residual
    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
    norm( U'*U - A ) / ( N * norm(A) * EPS ),
 where EPS is the machine epsilon, L' is the conjugate transpose of L,
 and U' is the conjugate transpose of U.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original Hermitian matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N)
[in,out]AFAC
          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
          On entry, the factor L or U from the L*L' or U'*U
          factorization of A.
          Overwritten with the reconstructed matrix, and then with the
          difference L*L' - A (or U'*U - A).
[in]LDAFAC
          LDAFAC is INTEGER
          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 107 of file zpot01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zpot02 ( character  UPLO,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldb, * )  B,
integer  LDB,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZPOT02

Purpose:
 ZPOT02 computes the residual for the solution of a Hermitian system
 of linear equations  A*x = b:

    RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ),

 where EPS is the machine epsilon.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B, the matrix of right hand sides.
          NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original Hermitian matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N)
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors for the system of linear
          equations.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.   LDX >= max(1,N).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the right hand side vectors for the system of
          linear equations.
          On exit, B is overwritten with the difference B - A*X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          The maximum over the number of right hand sides of
          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 127 of file zpot02.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zpot03 ( character  UPLO,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldainv, * )  AINV,
integer  LDAINV,
complex*16, dimension( ldwork, * )  WORK,
integer  LDWORK,
double precision, dimension( * )  RWORK,
double precision  RCOND,
double precision  RESID 
)

ZPOT03

Purpose:
 ZPOT03 computes the residual for a Hermitian matrix times its
 inverse:
    norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
 where EPS is the machine epsilon.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original Hermitian matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N)
[in,out]AINV
          AINV is COMPLEX*16 array, dimension (LDAINV,N)
          On entry, the inverse of the matrix A, stored as a Hermitian
          matrix in the same format as A.
          In this version, AINV is expanded into a full matrix and
          multiplied by A, so the opposing triangle of AINV will be
          changed; i.e., if the upper triangular part of AINV is
          stored, the lower triangular part will be used as work space.
[in]LDAINV
          LDAINV is INTEGER
          The leading dimension of the array AINV.  LDAINV >= max(1,N).
[out]WORK
          WORK is COMPLEX*16 array, dimension (LDWORK,N)
[in]LDWORK
          LDWORK is INTEGER
          The leading dimension of the array WORK.  LDWORK >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RCOND
          RCOND is DOUBLE PRECISION
          The reciprocal of the condition number of A, computed as
          ( 1/norm(A) ) / norm(AINV).
[out]RESID
          RESID is DOUBLE PRECISION
          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 126 of file zpot03.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zpot05 ( character  UPLO,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldb, * )  B,
integer  LDB,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldxact, * )  XACT,
integer  LDXACT,
double precision, dimension( * )  FERR,
double precision, dimension( * )  BERR,
double precision, dimension( * )  RESLTS 
)

ZPOT05

Purpose:
 ZPOT05 tests the error bounds from iterative refinement for the
 computed solution to a system of equations A*X = B, where A is a
 Hermitian n by n matrix.

 RESLTS(1) = test of the error bound
           = norm(X - XACT) / ( norm(X) * FERR )

 A large value is returned if this ratio is not less than one.

 RESLTS(2) = residual from the iterative refinement routine
           = the maximum of BERR / ( (n+1)*EPS + (*) ), where
             (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows of the matrices X, B, and XACT, and the
          order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of the matrices X, B, and XACT.
          NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The Hermitian matrix A.  If UPLO = 'U', the leading n by n
          upper triangular part of A contains the upper triangular part
          of the matrix A, and the strictly lower triangular part of A
          is not referenced.  If UPLO = 'L', the leading n by n lower
          triangular part of A contains the lower triangular part of
          the matrix A, and the strictly upper triangular part of A is
          not referenced.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side vectors for the system of linear
          equations.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors.  Each vector is stored as a
          column of the matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in]XACT
          XACT is COMPLEX*16 array, dimension (LDX,NRHS)
          The exact solution vectors.  Each vector is stored as a
          column of the matrix XACT.
[in]LDXACT
          LDXACT is INTEGER
          The leading dimension of the array XACT.  LDXACT >= max(1,N).
[in]FERR
          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bounds for each solution vector
          X.  If XTRUE is the true solution, FERR bounds the magnitude
          of the largest entry in (X - XTRUE) divided by the magnitude
          of the largest entry in X.
[in]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector (i.e., the smallest relative change in any entry of A
          or B that makes X an exact solution).
[out]RESLTS
          RESLTS is DOUBLE PRECISION array, dimension (2)
          The maximum over the NRHS solution vectors of the ratios:
          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 165 of file zpot05.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zpot06 ( character  UPLO,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldb, * )  B,
integer  LDB,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZPOT06

Purpose:
 ZPOT06 computes the residual for a solution of a system of linear
 equations  A*x = b :
    RESID = norm(B - A*X,inf) / ( norm(A,inf) * norm(X,inf) * EPS ),
 where EPS is the machine epsilon.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B, the matrix of right hand sides.
          NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original M x N matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors for the system of linear
          equations.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  If TRANS = 'N',
          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,N).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the right hand side vectors for the system of
          linear equations.
          On exit, B is overwritten with the difference B - A*X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  IF TRANS = 'N',
          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          The maximum over the number of right hand sides of
          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 127 of file zpot06.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zppt01 ( character  UPLO,
integer  N,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZPPT01

Purpose:
 ZPPT01 reconstructs a Hermitian positive definite packed matrix A
 from its L*L' or U'*U factorization and computes the residual
    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
    norm( U'*U - A ) / ( N * norm(A) * EPS ),
 where EPS is the machine epsilon, L' is the conjugate transpose of
 L, and U' is the conjugate transpose of U.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (N*(N+1)/2)
          The original Hermitian matrix A, stored as a packed
          triangular matrix.
[in,out]AFAC
          AFAC is COMPLEX*16 array, dimension (N*(N+1)/2)
          On entry, the factor L or U from the L*L' or U'*U
          factorization of A, stored as a packed triangular matrix.
          Overwritten with the reconstructed matrix, and then with the
          difference L*L' - A (or U'*U - A).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 96 of file zppt01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zppt02 ( character  UPLO,
integer  N,
integer  NRHS,
complex*16, dimension( * )  A,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldb, * )  B,
integer  LDB,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZPPT02

Purpose:
 ZPPT02 computes the residual in the solution of a Hermitian system
 of linear equations  A*x = b  when packed storage is used for the
 coefficient matrix.  The ratio computed is

    RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS),

 where EPS is the machine precision.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B, the matrix of right hand sides.
          NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (N*(N+1)/2)
          The original Hermitian matrix A, stored as a packed
          triangular matrix.
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors for the system of linear
          equations.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.   LDX >= max(1,N).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the right hand side vectors for the system of
          linear equations.
          On exit, B is overwritten with the difference B - A*X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          The maximum over the number of right hand sides of
          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 123 of file zppt02.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zppt03 ( character  UPLO,
integer  N,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AINV,
complex*16, dimension( ldwork, * )  WORK,
integer  LDWORK,
double precision, dimension( * )  RWORK,
double precision  RCOND,
double precision  RESID 
)

ZPPT03

Purpose:
 ZPPT03 computes the residual for a Hermitian packed matrix times its
 inverse:
    norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
 where EPS is the machine epsilon.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (N*(N+1)/2)
          The original Hermitian matrix A, stored as a packed
          triangular matrix.
[in]AINV
          AINV is COMPLEX*16 array, dimension (N*(N+1)/2)
          The (Hermitian) inverse of the matrix A, stored as a packed
          triangular matrix.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LDWORK,N)
[in]LDWORK
          LDWORK is INTEGER
          The leading dimension of the array WORK.  LDWORK >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RCOND
          RCOND is DOUBLE PRECISION
          The reciprocal of the condition number of A, computed as
          ( 1/norm(A) ) / norm(AINV).
[out]RESID
          RESID is DOUBLE PRECISION
          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 110 of file zppt03.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zppt05 ( character  UPLO,
integer  N,
integer  NRHS,
complex*16, dimension( * )  AP,
complex*16, dimension( ldb, * )  B,
integer  LDB,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldxact, * )  XACT,
integer  LDXACT,
double precision, dimension( * )  FERR,
double precision, dimension( * )  BERR,
double precision, dimension( * )  RESLTS 
)

ZPPT05

Purpose:
 ZPPT05 tests the error bounds from iterative refinement for the
 computed solution to a system of equations A*X = B, where A is a
 Hermitian matrix in packed storage format.

 RESLTS(1) = test of the error bound
           = norm(X - XACT) / ( norm(X) * FERR )

 A large value is returned if this ratio is not less than one.

 RESLTS(2) = residual from the iterative refinement routine
           = the maximum of BERR / ( (n+1)*EPS + (*) ), where
             (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored.
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows of the matrices X, B, and XACT, and the
          order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of the matrices X, B, and XACT.
          NRHS >= 0.
[in]AP
          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          The upper or lower triangle of the Hermitian matrix A, packed
          columnwise in a linear array.  The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side vectors for the system of linear
          equations.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors.  Each vector is stored as a
          column of the matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in]XACT
          XACT is COMPLEX*16 array, dimension (LDX,NRHS)
          The exact solution vectors.  Each vector is stored as a
          column of the matrix XACT.
[in]LDXACT
          LDXACT is INTEGER
          The leading dimension of the array XACT.  LDXACT >= max(1,N).
[in]FERR
          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bounds for each solution vector
          X.  If XTRUE is the true solution, FERR bounds the magnitude
          of the largest entry in (X - XTRUE) divided by the magnitude
          of the largest entry in X.
[in]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector (i.e., the smallest relative change in any entry of A
          or B that makes X an exact solution).
[out]RESLTS
          RESLTS is DOUBLE PRECISION array, dimension (2)
          The maximum over the NRHS solution vectors of the ratios:
          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 157 of file zppt05.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zpst01 ( character  UPLO,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldafac, * )  AFAC,
integer  LDAFAC,
complex*16, dimension( ldperm, * )  PERM,
integer  LDPERM,
integer, dimension( * )  PIV,
double precision, dimension( * )  RWORK,
double precision  RESID,
integer  RANK 
)

ZPST01

Purpose:
 ZPST01 reconstructs an Hermitian positive semidefinite matrix A
 from its L or U factors and the permutation matrix P and computes
 the residual
    norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or
    norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ),
 where EPS is the machine epsilon, L' is the conjugate transpose of L,
 and U' is the conjugate transpose of U.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original Hermitian matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N)
[in]AFAC
          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
          The factor L or U from the L*L' or U'*U
          factorization of A.
[in]LDAFAC
          LDAFAC is INTEGER
          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
[out]PERM
          PERM is COMPLEX*16 array, dimension (LDPERM,N)
          Overwritten with the reconstructed matrix, and then with the
          difference P*L*L'*P' - A (or P*U'*U*P' - A)
[in]LDPERM
          LDPERM is INTEGER
          The leading dimension of the array PERM.
          LDAPERM >= max(1,N).
[in]PIV
          PIV is INTEGER array, dimension (N)
          PIV is such that the nonzero entries are
          P( PIV( K ), K ) = 1.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
[in]RANK
          RANK is INTEGER
          number of nonzero singular values of A.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 136 of file zpst01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zptt01 ( integer  N,
double precision, dimension( * )  D,
complex*16, dimension( * )  E,
double precision, dimension( * )  DF,
complex*16, dimension( * )  EF,
complex*16, dimension( * )  WORK,
double precision  RESID 
)

ZPTT01

Purpose:
 ZPTT01 reconstructs a tridiagonal matrix A from its L*D*L'
 factorization and computes the residual
    norm(L*D*L' - A) / ( n * norm(A) * EPS ),
 where EPS is the machine epsilon.
Parameters:
[in]N
          N is INTEGTER
          The order of the matrix A.
[in]D
          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the tridiagonal matrix A.
[in]E
          E is COMPLEX*16 array, dimension (N-1)
          The (n-1) subdiagonal elements of the tridiagonal matrix A.
[in]DF
          DF is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the factor L from the L*D*L'
          factorization of A.
[in]EF
          EF is COMPLEX*16 array, dimension (N-1)
          The (n-1) subdiagonal elements of the factor L from the
          L*D*L' factorization of A.
[out]WORK
          WORK is COMPLEX*16 array, dimension (2*N)
[out]RESID
          RESID is DOUBLE PRECISION
          norm(L*D*L' - A) / (n * norm(A) * EPS)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 93 of file zptt01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zptt02 ( character  UPLO,
integer  N,
integer  NRHS,
double precision, dimension( * )  D,
complex*16, dimension( * )  E,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldb, * )  B,
integer  LDB,
double precision  RESID 
)

ZPTT02

Purpose:
 ZPTT02 computes the residual for the solution to a symmetric
 tridiagonal system of equations:
    RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS),
 where EPS is the machine epsilon.
Parameters:
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the superdiagonal or the subdiagonal of the
          tridiagonal matrix A is stored.
          = 'U':  E is the superdiagonal of A
          = 'L':  E is the subdiagonal of A
[in]N
          N is INTEGTER
          The order of the matrix A.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
[in]D
          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the tridiagonal matrix A.
[in]E
          E is COMPLEX*16 array, dimension (N-1)
          The (n-1) subdiagonal elements of the tridiagonal matrix A.
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The n by nrhs matrix of solution vectors X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the n by nrhs matrix of right hand side vectors B.
          On exit, B is overwritten with the difference B - A*X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]RESID
          RESID is DOUBLE PRECISION
          norm(B - A*X) / (norm(A) * norm(X) * EPS)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 116 of file zptt02.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zptt05 ( integer  N,
integer  NRHS,
double precision, dimension( * )  D,
complex*16, dimension( * )  E,
complex*16, dimension( ldb, * )  B,
integer  LDB,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldxact, * )  XACT,
integer  LDXACT,
double precision, dimension( * )  FERR,
double precision, dimension( * )  BERR,
double precision, dimension( * )  RESLTS 
)

ZPTT05

Purpose:
 ZPTT05 tests the error bounds from iterative refinement for the
 computed solution to a system of equations A*X = B, where A is a
 Hermitian tridiagonal matrix of order n.

 RESLTS(1) = test of the error bound
           = norm(X - XACT) / ( norm(X) * FERR )

 A large value is returned if this ratio is not less than one.

 RESLTS(2) = residual from the iterative refinement routine
           = the maximum of BERR / ( NZ*EPS + (*) ), where
             (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
             and NZ = max. number of nonzeros in any row of A, plus 1
Parameters:
[in]N
          N is INTEGER
          The number of rows of the matrices X, B, and XACT, and the
          order of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of the matrices X, B, and XACT.
          NRHS >= 0.
[in]D
          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the tridiagonal matrix A.
[in]E
          E is COMPLEX*16 array, dimension (N-1)
          The (n-1) subdiagonal elements of the tridiagonal matrix A.
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side vectors for the system of linear
          equations.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors.  Each vector is stored as a
          column of the matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[in]XACT
          XACT is COMPLEX*16 array, dimension (LDX,NRHS)
          The exact solution vectors.  Each vector is stored as a
          column of the matrix XACT.
[in]LDXACT
          LDXACT is INTEGER
          The leading dimension of the array XACT.  LDXACT >= max(1,N).
[in]FERR
          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bounds for each solution vector
          X.  If XTRUE is the true solution, FERR bounds the magnitude
          of the largest entry in (X - XTRUE) divided by the magnitude
          of the largest entry in X.
[in]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector (i.e., the smallest relative change in any entry of A
          or B that makes X an exact solution).
[out]RESLTS
          RESLTS is DOUBLE PRECISION array, dimension (2)
          The maximum over the NRHS solution vectors of the ratios:
          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
          RESLTS(2) = BERR / ( NZ*EPS + (*) )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 150 of file zptt05.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zqlt01 ( integer  M,
integer  N,
complex*16, dimension( lda, * )  A,
complex*16, dimension( lda, * )  AF,
complex*16, dimension( lda, * )  Q,
complex*16, dimension( lda, * )  L,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( * )  RESULT 
)

ZQLT01

Purpose:
 ZQLT01 tests ZGEQLF, which computes the QL factorization of an m-by-n
 matrix A, and partially tests ZUNGQL which forms the m-by-m
 orthogonal matrix Q.

 ZQLT01 compares L with Q'*A, and checks that Q is orthogonal.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The m-by-n matrix A.
[out]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the QL factorization of A, as returned by ZGEQLF.
          See ZGEQLF for further details.
[out]Q
          Q is COMPLEX*16 array, dimension (LDA,M)
          The m-by-m orthogonal matrix Q.
[out]L
          L is COMPLEX*16 array, dimension (LDA,max(M,N))
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A, AF, Q and R.
          LDA >= max(M,N).
[out]TAU
          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors, as returned
          by ZGEQLF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (2)
          The test ratios:
          RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS )
          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 126 of file zqlt01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zqlt02 ( integer  M,
integer  N,
integer  K,
complex*16, dimension( lda, * )  A,
complex*16, dimension( lda, * )  AF,
complex*16, dimension( lda, * )  Q,
complex*16, dimension( lda, * )  L,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( * )  RESULT 
)

ZQLT02

Purpose:
 ZQLT02 tests ZUNGQL, which generates an m-by-n matrix Q with
 orthonornmal columns that is defined as the product of k elementary
 reflectors.

 Given the QL factorization of an m-by-n matrix A, ZQLT02 generates
 the orthogonal matrix Q defined by the factorization of the last k
 columns of A; it compares L(m-n+1:m,n-k+1:n) with
 Q(1:m,m-n+1:m)'*A(1:m,n-k+1:n), and checks that the columns of Q are
 orthonormal.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix Q to be generated.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix Q to be generated.
          M >= N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. N >= K >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The m-by-n matrix A which was factorized by ZQLT01.
[in]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the QL factorization of A, as returned by ZGEQLF.
          See ZGEQLF for further details.
[out]Q
          Q is COMPLEX*16 array, dimension (LDA,N)
[out]L
          L is COMPLEX*16 array, dimension (LDA,N)
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A, AF, Q and L. LDA >= M.
[in]TAU
          TAU is COMPLEX*16 array, dimension (N)
          The scalar factors of the elementary reflectors corresponding
          to the QL factorization in AF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (2)
          The test ratios:
          RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS )
          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 136 of file zqlt02.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zqlt03 ( integer  M,
integer  N,
integer  K,
complex*16, dimension( lda, * )  AF,
complex*16, dimension( lda, * )  C,
complex*16, dimension( lda, * )  CC,
complex*16, dimension( lda, * )  Q,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( * )  RESULT 
)

ZQLT03

Purpose:
 ZQLT03 tests ZUNMQL, which computes Q*C, Q'*C, C*Q or C*Q'.

 ZQLT03 compares the results of a call to ZUNMQL with the results of
 forming Q explicitly by a call to ZUNGQL and then performing matrix
 multiplication by a call to ZGEMM.
Parameters:
[in]M
          M is INTEGER
          The order of the orthogonal matrix Q.  M >= 0.
[in]N
          N is INTEGER
          The number of rows or columns of the matrix C; C is m-by-n if
          Q is applied from the left, or n-by-m if Q is applied from
          the right.  N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          orthogonal matrix Q.  M >= K >= 0.
[in]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the QL factorization of an m-by-n matrix, as
          returned by ZGEQLF. See CGEQLF for further details.
[out]C
          C is COMPLEX*16 array, dimension (LDA,N)
[out]CC
          CC is COMPLEX*16 array, dimension (LDA,N)
[out]Q
          Q is COMPLEX*16 array, dimension (LDA,M)
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays AF, C, CC, and Q.
[in]TAU
          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors corresponding
          to the QL factorization in AF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of WORK.  LWORK must be at least M, and should be
          M*NB, where NB is the blocksize for this environment.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (4)
          The test ratios compare two techniques for multiplying a
          random matrix C by an m-by-m orthogonal matrix Q.
          RESULT(1) = norm( Q*C - Q*C )  / ( M * norm(C) * EPS )
          RESULT(2) = norm( C*Q - C*Q )  / ( M * norm(C) * EPS )
          RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS )
          RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 136 of file zqlt03.f.

Here is the call graph for this function:

Here is the caller graph for this function:

DOUBLE PRECISION function zqpt01 ( integer  M,
integer  N,
integer  K,
complex*16, dimension( lda, * )  A,
complex*16, dimension( lda, * )  AF,
integer  LDA,
complex*16, dimension( * )  TAU,
integer, dimension( * )  JPVT,
complex*16, dimension( lwork )  WORK,
integer  LWORK 
)

ZQPT01

Purpose:
 ZQPT01 tests the QR-factorization with pivoting of a matrix A.  The
 array AF contains the (possibly partial) QR-factorization of A, where
 the upper triangle of AF(1:k,1:k) is a partial triangular factor,
 the entries below the diagonal in the first k columns are the
 Householder vectors, and the rest of AF contains a partially updated
 matrix.

 This function returns ||A*P - Q*R||/(||norm(A)||*eps*M)
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrices A and AF.
[in]N
          N is INTEGER
          The number of columns of the matrices A and AF.
[in]K
          K is INTEGER
          The number of columns of AF that have been reduced
          to upper triangular form.
[in]A
          A is COMPLEX*16 array, dimension (LDA, N)
          The original matrix A.
[in]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          The (possibly partial) output of ZGEQPF.  The upper triangle
          of AF(1:k,1:k) is a partial triangular factor, the entries
          below the diagonal in the first k columns are the Householder
          vectors, and the rest of AF contains a partially updated
          matrix.
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A and AF.
[in]TAU
          TAU is COMPLEX*16 array, dimension (K)
          Details of the Householder transformations as returned by
          ZGEQPF.
[in]JPVT
          JPVT is INTEGER array, dimension (N)
          Pivot information as returned by ZGEQPF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK >= M*N+N.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 120 of file zqpt01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zqrt01 ( integer  M,
integer  N,
complex*16, dimension( lda, * )  A,
complex*16, dimension( lda, * )  AF,
complex*16, dimension( lda, * )  Q,
complex*16, dimension( lda, * )  R,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( * )  RESULT 
)

ZQRT01

Purpose:
 ZQRT01 tests ZGEQRF, which computes the QR factorization of an m-by-n
 matrix A, and partially tests ZUNGQR which forms the m-by-m
 orthogonal matrix Q.

 ZQRT01 compares R with Q'*A, and checks that Q is orthogonal.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The m-by-n matrix A.
[out]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the QR factorization of A, as returned by ZGEQRF.
          See ZGEQRF for further details.
[out]Q
          Q is COMPLEX*16 array, dimension (LDA,M)
          The m-by-m orthogonal matrix Q.
[out]R
          R is COMPLEX*16 array, dimension (LDA,max(M,N))
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A, AF, Q and R.
          LDA >= max(M,N).
[out]TAU
          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors, as returned
          by ZGEQRF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (2)
          The test ratios:
          RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 126 of file zqrt01.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zqrt01p ( integer  M,
integer  N,
complex*16, dimension( lda, * )  A,
complex*16, dimension( lda, * )  AF,
complex*16, dimension( lda, * )  Q,
complex*16, dimension( lda, * )  R,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( * )  RESULT 
)

ZQRT01P

Purpose:
 ZQRT01P tests ZGEQRFP, which computes the QR factorization of an m-by-n
 matrix A, and partially tests ZUNGQR which forms the m-by-m
 orthogonal matrix Q.

 ZQRT01P compares R with Q'*A, and checks that Q is orthogonal.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The m-by-n matrix A.
[out]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the QR factorization of A, as returned by ZGEQRFP.
          See ZGEQRFP for further details.
[out]Q
          Q is COMPLEX*16 array, dimension (LDA,M)
          The m-by-m orthogonal matrix Q.
[out]R
          R is COMPLEX*16 array, dimension (LDA,max(M,N))
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A, AF, Q and R.
          LDA >= max(M,N).
[out]TAU
          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors, as returned
          by ZGEQRFP.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (2)
          The test ratios:
          RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 126 of file zqrt01p.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zqrt02 ( integer  M,
integer  N,
integer  K,
complex*16, dimension( lda, * )  A,
complex*16, dimension( lda, * )  AF,
complex*16, dimension( lda, * )  Q,
complex*16, dimension( lda, * )  R,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( * )  RESULT 
)

ZQRT02

Purpose:
 ZQRT02 tests ZUNGQR, which generates an m-by-n matrix Q with
 orthonornmal columns that is defined as the product of k elementary
 reflectors.

 Given the QR factorization of an m-by-n matrix A, ZQRT02 generates
 the orthogonal matrix Q defined by the factorization of the first k
 columns of A; it compares R(1:n,1:k) with Q(1:m,1:n)'*A(1:m,1:k),
 and checks that the columns of Q are orthonormal.
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix Q to be generated.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix Q to be generated.
          M >= N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. N >= K >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The m-by-n matrix A which was factorized by ZQRT01.
[in]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the QR factorization of A, as returned by ZGEQRF.
          See ZGEQRF for further details.
[out]Q
          Q is COMPLEX*16 array, dimension (LDA,N)
[out]R
          R is COMPLEX*16 array, dimension (LDA,N)
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A, AF, Q and R. LDA >= M.
[in]TAU
          TAU is COMPLEX*16 array, dimension (N)
          The scalar factors of the elementary reflectors corresponding
          to the QR factorization in AF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (2)
          The test ratios:
          RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 135 of file zqrt02.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zqrt03 ( integer  M,
integer  N,
integer  K,
complex*16, dimension( lda, * )  AF,
complex*16, dimension( lda, * )  C,
complex*16, dimension( lda, * )  CC,
complex*16, dimension( lda, * )  Q,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( * )  RESULT 
)

ZQRT03

Purpose:
 ZQRT03 tests ZUNMQR, which computes Q*C, Q'*C, C*Q or C*Q'.

 ZQRT03 compares the results of a call to ZUNMQR with the results of
 forming Q explicitly by a call to ZUNGQR and then performing matrix
 multiplication by a call to ZGEMM.
Parameters:
[in]M
          M is INTEGER
          The order of the orthogonal matrix Q.  M >= 0.
[in]N
          N is INTEGER
          The number of rows or columns of the matrix C; C is m-by-n if
          Q is applied from the left, or n-by-m if Q is applied from
          the right.  N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          orthogonal matrix Q.  M >= K >= 0.
[in]AF
          AF is COMPLEX*16 array, dimension (LDA,N)
          Details of the QR factorization of an m-by-n matrix, as
          returnedby ZGEQRF. See CGEQRF for further details.
[out]C
          C is COMPLEX*16 array, dimension (LDA,N)
[out]CC
          CC is COMPLEX*16 array, dimension (LDA,N)
[out]Q
          Q is COMPLEX*16 array, dimension (LDA,M)
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays AF, C, CC, and Q.
[in]TAU
          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors corresponding
          to the QR factorization in AF.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of WORK.  LWORK must be at least M, and should be
          M*NB, where NB is the blocksize for this environment.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (4)
          The test ratios compare two techniques for multiplying a
          random matrix C by an m-by-m orthogonal matrix Q.
          RESULT(1) = norm( Q*C - Q*C )  / ( M * norm(C) * EPS )
          RESULT(2) = norm( C*Q - C*Q )  / ( M * norm(C) * EPS )
          RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS )
          RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS )
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 136 of file zqrt03.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zqrt04 ( integer  M,
integer  N,
integer  NB,
double precision, dimension(6)  RESULT 
)

ZQRT04

Purpose:
 ZQRT04 tests ZGEQRT and ZGEMQRT.
Parameters:
[in]M
          M is INTEGER
          Number of rows in test matrix.
[in]N
          N is INTEGER
          Number of columns in test matrix.
[in]NB
          NB is INTEGER
          Block size of test matrix.  NB <= Min(M,N).
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (6)
          Results of each of the six tests below.

          RESULT(1) = | A - Q R |
          RESULT(2) = | I - Q^H Q |
          RESULT(3) = | Q C - Q C |
          RESULT(4) = | Q^H C - Q^H C |
          RESULT(5) = | C Q - C Q | 
          RESULT(6) = | C Q^H - C Q^H |
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012

Definition at line 74 of file zqrt04.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zqrt05 ( integer  M,
integer  N,
integer  L,
integer  NB,
double precision, dimension(6)  RESULT 
)

ZQRT05

Purpose:
 ZQRT05 tests ZTPQRT and ZTPMQRT.
Parameters:
[in]M
          M is INTEGER
          Number of rows in lower part of the test matrix.
[in]N
          N is INTEGER
          Number of columns in test matrix.
[in]L
          L is INTEGER
          The number of rows of the upper trapezoidal part the
          lower test matrix.  0 <= L <= M.
[in]NB
          NB is INTEGER
          Block size of test matrix.  NB <= N.
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (6)
          Results of each of the six tests below.

          RESULT(1) = | A - Q R |
          RESULT(2) = | I - Q^H Q |
          RESULT(3) = | Q C - Q C |
          RESULT(4) = | Q^H C - Q^H C |
          RESULT(5) = | C Q - C Q | 
          RESULT(6) = | C Q^H - C Q^H |
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
April 2012

Definition at line 81 of file zqrt05.f.

Here is the call graph for this function:

Here is the caller graph for this function:

DOUBLE PRECISION function zqrt11 ( integer  M,
integer  K,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( lwork )  WORK,
integer  LWORK 
)

ZQRT11

Purpose:
 ZQRT11 computes the test ratio

       || Q'*Q - I || / (eps * m)

 where the orthogonal matrix Q is represented as a product of
 elementary transformations.  Each transformation has the form

    H(k) = I - tau(k) v(k) v(k)'

 where tau(k) is stored in TAU(k) and v(k) is an m-vector of the form
 [ 0 ... 0 1 x(k) ]', where x(k) is a vector of length m-k stored
 in A(k+1:m,k).
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.
[in]K
          K is INTEGER
          The number of columns of A whose subdiagonal entries
          contain information about orthogonal transformations.
[in]A
          A is COMPLEX*16 array, dimension (LDA,K)
          The (possibly partial) output of a QR reduction routine.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.
[in]TAU
          TAU is COMPLEX*16 array, dimension (K)
          The scaling factors tau for the elementary transformations as
          computed by the QR factorization routine.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK >= M*M + M.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 99 of file zqrt11.f.

Here is the call graph for this function:

Here is the caller graph for this function:

DOUBLE PRECISION function zqrt12 ( integer  M,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( * )  S,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK 
)

ZQRT12

Purpose:
 ZQRT12 computes the singular values `svlues' of the upper trapezoid
 of A(1:M,1:N) and returns the ratio

      || s - svlues||/(||svlues||*eps*max(M,N))
Parameters:
[in]M
          M is INTEGER
          The number of rows of the matrix A.
[in]N
          N is INTEGER
          The number of columns of the matrix A.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The M-by-N matrix A. Only the upper trapezoid is referenced.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.
[in]S
          S is DOUBLE PRECISION array, dimension (min(M,N))
          The singular values of the matrix A.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK. LWORK >= M*N + 2*min(M,N) +
          max(M,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (2*min(M,N))
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 97 of file zqrt12.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zqrt13 ( integer  SCALE,
integer  M,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
double precision  NORMA,
integer, dimension( 4 )  ISEED 
)

ZQRT13

Purpose:
 ZQRT13 generates a full-rank matrix that may be scaled to have large
 or small norm.
Parameters:
[in]SCALE
          SCALE is INTEGER
          SCALE = 1: normally scaled matrix
          SCALE = 2: matrix scaled up
          SCALE = 3: matrix scaled down
[in]M
          M is INTEGER
          The number of rows of the matrix A.
[in]N
          N is INTEGER
          The number of columns of A.
[out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The M-by-N matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.
[out]NORMA
          NORMA is DOUBLE PRECISION
          The one-norm of A.
[in,out]ISEED
          ISEED is integer array, dimension (4)
          Seed for random number generator
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 92 of file zqrt13.f.

Here is the call graph for this function:

Here is the caller graph for this function:

DOUBLE PRECISION function zqrt14 ( character  TRANS,
integer  M,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( lwork )  WORK,
integer  LWORK 
)

ZQRT14

Purpose:
 ZQRT14 checks whether X is in the row space of A or A'.  It does so
 by scaling both X and A such that their norms are in the range
 [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X]
 (if TRANS = 'C') or an LQ factorization of [A',X]' (if TRANS = 'N'),
 and returning the norm of the trailing triangle, scaled by
 MAX(M,N,NRHS)*eps.
Parameters:
[in]TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, check for X in the row space of A
          = 'C':  Conjugate transpose, check for X in row space of A'.
[in]M
          M is INTEGER
          The number of rows of the matrix A.
[in]N
          N is INTEGER
          The number of columns of the matrix A.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of X.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The M-by-N matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          If TRANS = 'N', the N-by-NRHS matrix X.
          IF TRANS = 'C', the M-by-NRHS matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.
[out]WORK
          WORK is COMPLEX*16 array dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          length of workspace array required
          If TRANS = 'N', LWORK >= (M+NRHS)*(N+2);
          if TRANS = 'C', LWORK >= (N+NRHS)*(M+2).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 116 of file zqrt14.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zqrt15 ( integer  SCALE,
integer  RKSEL,
integer  M,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldb, * )  B,
integer  LDB,
double precision, dimension( * )  S,
integer  RANK,
double precision  NORMA,
double precision  NORMB,
integer, dimension( 4 )  ISEED,
complex*16, dimension( lwork )  WORK,
integer  LWORK 
)

ZQRT15

Purpose:
 ZQRT15 generates a matrix with full or deficient rank and of various
 norms.
Parameters:
[in]SCALE
          SCALE is INTEGER
          SCALE = 1: normally scaled matrix
          SCALE = 2: matrix scaled up
          SCALE = 3: matrix scaled down
[in]RKSEL
          RKSEL is INTEGER
          RKSEL = 1: full rank matrix
          RKSEL = 2: rank-deficient matrix
[in]M
          M is INTEGER
          The number of rows of the matrix A.
[in]N
          N is INTEGER
          The number of columns of A.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B.
[out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The M-by-N matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.
[out]B
          B is COMPLEX*16 array, dimension (LDB, NRHS)
          A matrix that is in the range space of matrix A.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.
[out]S
          S is DOUBLE PRECISION array, dimension MIN(M,N)
          Singular values of A.
[out]RANK
          RANK is INTEGER
          number of nonzero singular values of A.
[out]NORMA
          NORMA is DOUBLE PRECISION
          one-norm norm of A.
[out]NORMB
          NORMB is DOUBLE PRECISION
          one-norm norm of B.
[in,out]ISEED
          ISEED is integer array, dimension (4)
          seed for random number generator.
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          length of work space required.
          LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 149 of file zqrt15.f.

Here is the call graph for this function:

Here is the caller graph for this function:

subroutine zqrt16 ( character  TRANS,
integer  M,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldb, * )  B,
integer  LDB,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZQRT16

Purpose:
 ZQRT16 computes the residual for a solution of a system of linear
 equations  A*x = b  or  A'*x = b:
    RESID = norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ),
 where EPS is the machine epsilon.
Parameters:
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A *x = b
          = 'T':  A^T*x = b, where A^T is the transpose of A
          = 'C':  A^H*x = b, where A^H is the conjugate transpose of A
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of columns of B, the matrix of right hand sides.
          NRHS >= 0.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original M x N matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          The computed solution vectors for the system of linear
          equations.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  If TRANS = 'N',
          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
[in,out]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          On entry, the right hand side vectors for the system of
          linear equations.
          On exit, B is overwritten with the difference B - A*X.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  IF TRANS = 'N',
          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESID
          RESID is DOUBLE PRECISION
          The maximum over the number of right hand sides of
          norm(B - A*X) / ( max(m,n) * norm(A) * norm(X) * EPS ).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011

Definition at line 133 of file zqrt16.f.

Here is the call graph for this function:

Here is the caller graph for this function:

DOUBLE PRECISION function zqrt17 ( character  TRANS,
integer  IRESID,
integer  M,
integer  N,
integer  NRHS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldb, * )  B,
integer  LDB,
complex*16, dimension( ldb, * )  C,
complex*16, dimension( lwork )  WORK,
integer  LWORK 
)

ZQRT17

Purpose:
 ZQRT17 computes the ratio

    || R'*op(A) ||/(||A||*alpha*max(M,N,NRHS)*eps)

 where R = op(A)*X - B, op(A) is A or A', and

    alpha = ||B|| if IRESID = 1 (zero-residual problem)
    alpha = ||R|| if IRESID = 2 (otherwise).
Parameters:
[in]TRANS
          TRANS is CHARACTER*1
          Specifies whether or not the transpose of A is used.
          = 'N':  No transpose, op(A) = A.
          = 'C':  Conjugate transpose, op(A) = A'.
[in]IRESID
          IRESID is INTEGER
          IRESID = 1 indicates zero-residual problem.
          IRESID = 2 indicates non-zero residual.
[in]M
          M is INTEGER
          The number of rows of the matrix A.
          If TRANS = 'N', the number of rows of the matrix B.
          If TRANS = 'C', the number of rows of the matrix X.
[in]N
          N is INTEGER
          The number of columns of the matrix  A.
          If TRANS = 'N', the number of rows of the matrix X.
          If TRANS = 'C', the number of rows of the matrix B.
[in]NRHS
          NRHS is INTEGER
          The number of columns of the matrices X and B.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The m-by-n matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= M.
[in]X
          X is COMPLEX*16 array, dimension (LDX,NRHS)
          If TRANS = 'N', the n-by-nrhs matrix X.
          If TRANS = 'C', the m-by-nrhs matrix X.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.
          If TRANS = 'N', LDX >= N.
          If TRANS = 'C', LDX >= M.
[in]B
          B is COMPLEX*16 array, dimension (LDB,NRHS)
          If T