LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
zdrvpb.f
Go to the documentation of this file.
1 *> \brief \b ZDRVPB
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
12 * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
13 * RWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NOUT, NRHS
18 * DOUBLE PRECISION THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER NVAL( * )
23 * DOUBLE PRECISION RWORK( * ), S( * )
24 * COMPLEX*16 A( * ), AFAC( * ), ASAV( * ), B( * ),
25 * $ BSAV( * ), WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> ZDRVPB tests the driver routines ZPBSV and -SVX.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NN
49 *> \verbatim
50 *> NN is INTEGER
51 *> The number of values of N contained in the vector NVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] NVAL
55 *> \verbatim
56 *> NVAL is INTEGER array, dimension (NN)
57 *> The values of the matrix dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NRHS
61 *> \verbatim
62 *> NRHS is INTEGER
63 *> The number of right hand side vectors to be generated for
64 *> each linear system.
65 *> \endverbatim
66 *>
67 *> \param[in] THRESH
68 *> \verbatim
69 *> THRESH is DOUBLE PRECISION
70 *> The threshold value for the test ratios. A result is
71 *> included in the output file if RESULT >= THRESH. To have
72 *> every test ratio printed, use THRESH = 0.
73 *> \endverbatim
74 *>
75 *> \param[in] TSTERR
76 *> \verbatim
77 *> TSTERR is LOGICAL
78 *> Flag that indicates whether error exits are to be tested.
79 *> \endverbatim
80 *>
81 *> \param[in] NMAX
82 *> \verbatim
83 *> NMAX is INTEGER
84 *> The maximum value permitted for N, used in dimensioning the
85 *> work arrays.
86 *> \endverbatim
87 *>
88 *> \param[out] A
89 *> \verbatim
90 *> A is COMPLEX*16 array, dimension (NMAX*NMAX)
91 *> \endverbatim
92 *>
93 *> \param[out] AFAC
94 *> \verbatim
95 *> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
96 *> \endverbatim
97 *>
98 *> \param[out] ASAV
99 *> \verbatim
100 *> ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)
101 *> \endverbatim
102 *>
103 *> \param[out] B
104 *> \verbatim
105 *> B is COMPLEX*16 array, dimension (NMAX*NRHS)
106 *> \endverbatim
107 *>
108 *> \param[out] BSAV
109 *> \verbatim
110 *> BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
111 *> \endverbatim
112 *>
113 *> \param[out] X
114 *> \verbatim
115 *> X is COMPLEX*16 array, dimension (NMAX*NRHS)
116 *> \endverbatim
117 *>
118 *> \param[out] XACT
119 *> \verbatim
120 *> XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
121 *> \endverbatim
122 *>
123 *> \param[out] S
124 *> \verbatim
125 *> S is DOUBLE PRECISION array, dimension (NMAX)
126 *> \endverbatim
127 *>
128 *> \param[out] WORK
129 *> \verbatim
130 *> WORK is COMPLEX*16 array, dimension
131 *> (NMAX*max(3,NRHS))
132 *> \endverbatim
133 *>
134 *> \param[out] RWORK
135 *> \verbatim
136 *> RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
137 *> \endverbatim
138 *>
139 *> \param[in] NOUT
140 *> \verbatim
141 *> NOUT is INTEGER
142 *> The unit number for output.
143 *> \endverbatim
144 *
145 * Authors:
146 * ========
147 *
148 *> \author Univ. of Tennessee
149 *> \author Univ. of California Berkeley
150 *> \author Univ. of Colorado Denver
151 *> \author NAG Ltd.
152 *
153 *> \date November 2011
154 *
155 *> \ingroup complex16_lin
156 *
157 * =====================================================================
158  SUBROUTINE zdrvpb( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
159  $ a, afac, asav, b, bsav, x, xact, s, work,
160  $ rwork, nout )
161 *
162 * -- LAPACK test routine (version 3.4.0) --
163 * -- LAPACK is a software package provided by Univ. of Tennessee, --
164 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
165 * November 2011
166 *
167 * .. Scalar Arguments ..
168  LOGICAL tsterr
169  INTEGER nmax, nn, nout, nrhs
170  DOUBLE PRECISION thresh
171 * ..
172 * .. Array Arguments ..
173  LOGICAL dotype( * )
174  INTEGER nval( * )
175  DOUBLE PRECISION rwork( * ), s( * )
176  COMPLEX*16 a( * ), afac( * ), asav( * ), b( * ),
177  $ bsav( * ), work( * ), x( * ), xact( * )
178 * ..
179 *
180 * =====================================================================
181 *
182 * .. Parameters ..
183  DOUBLE PRECISION one, zero
184  parameter( one = 1.0d+0, zero = 0.0d+0 )
185  INTEGER ntypes, ntests
186  parameter( ntypes = 8, ntests = 6 )
187  INTEGER nbw
188  parameter( nbw = 4 )
189 * ..
190 * .. Local Scalars ..
191  LOGICAL equil, nofact, prefac, zerot
192  CHARACTER dist, equed, fact, packit, type, uplo, xtype
193  CHARACTER*3 path
194  INTEGER i, i1, i2, iequed, ifact, ikd, imat, in, info,
195  $ ioff, iuplo, iw, izero, k, k1, kd, kl, koff,
196  $ ku, lda, ldab, mode, n, nb, nbmin, nerrs,
197  $ nfact, nfail, nimat, nkd, nrun, nt
198  DOUBLE PRECISION ainvnm, amax, anorm, cndnum, rcond, rcondc,
199  $ roldc, scond
200 * ..
201 * .. Local Arrays ..
202  CHARACTER equeds( 2 ), facts( 3 )
203  INTEGER iseed( 4 ), iseedy( 4 ), kdval( nbw )
204  DOUBLE PRECISION result( ntests )
205 * ..
206 * .. External Functions ..
207  LOGICAL lsame
208  DOUBLE PRECISION dget06, zlange, zlanhb
209  EXTERNAL lsame, dget06, zlange, zlanhb
210 * ..
211 * .. External Subroutines ..
212  EXTERNAL aladhd, alaerh, alasvm, xlaenv, zcopy, zerrvx,
216 * ..
217 * .. Intrinsic Functions ..
218  INTRINSIC dcmplx, max, min
219 * ..
220 * .. Scalars in Common ..
221  LOGICAL lerr, ok
222  CHARACTER*32 srnamt
223  INTEGER infot, nunit
224 * ..
225 * .. Common blocks ..
226  common / infoc / infot, nunit, ok, lerr
227  common / srnamc / srnamt
228 * ..
229 * .. Data statements ..
230  DATA iseedy / 1988, 1989, 1990, 1991 /
231  DATA facts / 'F', 'N', 'E' / , equeds / 'N', 'Y' /
232 * ..
233 * .. Executable Statements ..
234 *
235 * Initialize constants and the random number seed.
236 *
237  path( 1: 1 ) = 'Zomplex precision'
238  path( 2: 3 ) = 'PB'
239  nrun = 0
240  nfail = 0
241  nerrs = 0
242  DO 10 i = 1, 4
243  iseed( i ) = iseedy( i )
244  10 continue
245 *
246 * Test the error exits
247 *
248  IF( tsterr )
249  $ CALL zerrvx( path, nout )
250  infot = 0
251  kdval( 1 ) = 0
252 *
253 * Set the block size and minimum block size for testing.
254 *
255  nb = 1
256  nbmin = 2
257  CALL xlaenv( 1, nb )
258  CALL xlaenv( 2, nbmin )
259 *
260 * Do for each value of N in NVAL
261 *
262  DO 110 in = 1, nn
263  n = nval( in )
264  lda = max( n, 1 )
265  xtype = 'N'
266 *
267 * Set limits on the number of loop iterations.
268 *
269  nkd = max( 1, min( n, 4 ) )
270  nimat = ntypes
271  IF( n.EQ.0 )
272  $ nimat = 1
273 *
274  kdval( 2 ) = n + ( n+1 ) / 4
275  kdval( 3 ) = ( 3*n-1 ) / 4
276  kdval( 4 ) = ( n+1 ) / 4
277 *
278  DO 100 ikd = 1, nkd
279 *
280 * Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order
281 * makes it easier to skip redundant values for small values
282 * of N.
283 *
284  kd = kdval( ikd )
285  ldab = kd + 1
286 *
287 * Do first for UPLO = 'U', then for UPLO = 'L'
288 *
289  DO 90 iuplo = 1, 2
290  koff = 1
291  IF( iuplo.EQ.1 ) THEN
292  uplo = 'U'
293  packit = 'Q'
294  koff = max( 1, kd+2-n )
295  ELSE
296  uplo = 'L'
297  packit = 'B'
298  END IF
299 *
300  DO 80 imat = 1, nimat
301 *
302 * Do the tests only if DOTYPE( IMAT ) is true.
303 *
304  IF( .NOT.dotype( imat ) )
305  $ go to 80
306 *
307 * Skip types 2, 3, or 4 if the matrix size is too small.
308 *
309  zerot = imat.GE.2 .AND. imat.LE.4
310  IF( zerot .AND. n.LT.imat-1 )
311  $ go to 80
312 *
313  IF( .NOT.zerot .OR. .NOT.dotype( 1 ) ) THEN
314 *
315 * Set up parameters with ZLATB4 and generate a test
316 * matrix with ZLATMS.
317 *
318  CALL zlatb4( path, imat, n, n, type, kl, ku, anorm,
319  $ mode, cndnum, dist )
320 *
321  srnamt = 'ZLATMS'
322  CALL zlatms( n, n, dist, iseed, type, rwork, mode,
323  $ cndnum, anorm, kd, kd, packit,
324  $ a( koff ), ldab, work, info )
325 *
326 * Check error code from ZLATMS.
327 *
328  IF( info.NE.0 ) THEN
329  CALL alaerh( path, 'ZLATMS', info, 0, uplo, n,
330  $ n, -1, -1, -1, imat, nfail, nerrs,
331  $ nout )
332  go to 80
333  END IF
334  ELSE IF( izero.GT.0 ) THEN
335 *
336 * Use the same matrix for types 3 and 4 as for type
337 * 2 by copying back the zeroed out column,
338 *
339  iw = 2*lda + 1
340  IF( iuplo.EQ.1 ) THEN
341  ioff = ( izero-1 )*ldab + kd + 1
342  CALL zcopy( izero-i1, work( iw ), 1,
343  $ a( ioff-izero+i1 ), 1 )
344  iw = iw + izero - i1
345  CALL zcopy( i2-izero+1, work( iw ), 1,
346  $ a( ioff ), max( ldab-1, 1 ) )
347  ELSE
348  ioff = ( i1-1 )*ldab + 1
349  CALL zcopy( izero-i1, work( iw ), 1,
350  $ a( ioff+izero-i1 ),
351  $ max( ldab-1, 1 ) )
352  ioff = ( izero-1 )*ldab + 1
353  iw = iw + izero - i1
354  CALL zcopy( i2-izero+1, work( iw ), 1,
355  $ a( ioff ), 1 )
356  END IF
357  END IF
358 *
359 * For types 2-4, zero one row and column of the matrix
360 * to test that INFO is returned correctly.
361 *
362  izero = 0
363  IF( zerot ) THEN
364  IF( imat.EQ.2 ) THEN
365  izero = 1
366  ELSE IF( imat.EQ.3 ) THEN
367  izero = n
368  ELSE
369  izero = n / 2 + 1
370  END IF
371 *
372 * Save the zeroed out row and column in WORK(*,3)
373 *
374  iw = 2*lda
375  DO 20 i = 1, min( 2*kd+1, n )
376  work( iw+i ) = zero
377  20 continue
378  iw = iw + 1
379  i1 = max( izero-kd, 1 )
380  i2 = min( izero+kd, n )
381 *
382  IF( iuplo.EQ.1 ) THEN
383  ioff = ( izero-1 )*ldab + kd + 1
384  CALL zswap( izero-i1, a( ioff-izero+i1 ), 1,
385  $ work( iw ), 1 )
386  iw = iw + izero - i1
387  CALL zswap( i2-izero+1, a( ioff ),
388  $ max( ldab-1, 1 ), work( iw ), 1 )
389  ELSE
390  ioff = ( i1-1 )*ldab + 1
391  CALL zswap( izero-i1, a( ioff+izero-i1 ),
392  $ max( ldab-1, 1 ), work( iw ), 1 )
393  ioff = ( izero-1 )*ldab + 1
394  iw = iw + izero - i1
395  CALL zswap( i2-izero+1, a( ioff ), 1,
396  $ work( iw ), 1 )
397  END IF
398  END IF
399 *
400 * Set the imaginary part of the diagonals.
401 *
402  IF( iuplo.EQ.1 ) THEN
403  CALL zlaipd( n, a( kd+1 ), ldab, 0 )
404  ELSE
405  CALL zlaipd( n, a( 1 ), ldab, 0 )
406  END IF
407 *
408 * Save a copy of the matrix A in ASAV.
409 *
410  CALL zlacpy( 'Full', kd+1, n, a, ldab, asav, ldab )
411 *
412  DO 70 iequed = 1, 2
413  equed = equeds( iequed )
414  IF( iequed.EQ.1 ) THEN
415  nfact = 3
416  ELSE
417  nfact = 1
418  END IF
419 *
420  DO 60 ifact = 1, nfact
421  fact = facts( ifact )
422  prefac = lsame( fact, 'F' )
423  nofact = lsame( fact, 'N' )
424  equil = lsame( fact, 'E' )
425 *
426  IF( zerot ) THEN
427  IF( prefac )
428  $ go to 60
429  rcondc = zero
430 *
431  ELSE IF( .NOT.lsame( fact, 'N' ) ) THEN
432 *
433 * Compute the condition number for comparison
434 * with the value returned by ZPBSVX (FACT =
435 * 'N' reuses the condition number from the
436 * previous iteration with FACT = 'F').
437 *
438  CALL zlacpy( 'Full', kd+1, n, asav, ldab,
439  $ afac, ldab )
440  IF( equil .OR. iequed.GT.1 ) THEN
441 *
442 * Compute row and column scale factors to
443 * equilibrate the matrix A.
444 *
445  CALL zpbequ( uplo, n, kd, afac, ldab, s,
446  $ scond, amax, info )
447  IF( info.EQ.0 .AND. n.GT.0 ) THEN
448  IF( iequed.GT.1 )
449  $ scond = zero
450 *
451 * Equilibrate the matrix.
452 *
453  CALL zlaqhb( uplo, n, kd, afac, ldab,
454  $ s, scond, amax, equed )
455  END IF
456  END IF
457 *
458 * Save the condition number of the
459 * non-equilibrated system for use in ZGET04.
460 *
461  IF( equil )
462  $ roldc = rcondc
463 *
464 * Compute the 1-norm of A.
465 *
466  anorm = zlanhb( '1', uplo, n, kd, afac, ldab,
467  $ rwork )
468 *
469 * Factor the matrix A.
470 *
471  CALL zpbtrf( uplo, n, kd, afac, ldab, info )
472 *
473 * Form the inverse of A.
474 *
475  CALL zlaset( 'Full', n, n, dcmplx( zero ),
476  $ dcmplx( one ), a, lda )
477  srnamt = 'ZPBTRS'
478  CALL zpbtrs( uplo, n, kd, n, afac, ldab, a,
479  $ lda, info )
480 *
481 * Compute the 1-norm condition number of A.
482 *
483  ainvnm = zlange( '1', n, n, a, lda, rwork )
484  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
485  rcondc = one
486  ELSE
487  rcondc = ( one / anorm ) / ainvnm
488  END IF
489  END IF
490 *
491 * Restore the matrix A.
492 *
493  CALL zlacpy( 'Full', kd+1, n, asav, ldab, a,
494  $ ldab )
495 *
496 * Form an exact solution and set the right hand
497 * side.
498 *
499  srnamt = 'ZLARHS'
500  CALL zlarhs( path, xtype, uplo, ' ', n, n, kd,
501  $ kd, nrhs, a, ldab, xact, lda, b,
502  $ lda, iseed, info )
503  xtype = 'C'
504  CALL zlacpy( 'Full', n, nrhs, b, lda, bsav,
505  $ lda )
506 *
507  IF( nofact ) THEN
508 *
509 * --- Test ZPBSV ---
510 *
511 * Compute the L*L' or U'*U factorization of the
512 * matrix and solve the system.
513 *
514  CALL zlacpy( 'Full', kd+1, n, a, ldab, afac,
515  $ ldab )
516  CALL zlacpy( 'Full', n, nrhs, b, lda, x,
517  $ lda )
518 *
519  srnamt = 'ZPBSV '
520  CALL zpbsv( uplo, n, kd, nrhs, afac, ldab, x,
521  $ lda, info )
522 *
523 * Check error code from ZPBSV .
524 *
525  IF( info.NE.izero ) THEN
526  CALL alaerh( path, 'ZPBSV ', info, izero,
527  $ uplo, n, n, kd, kd, nrhs,
528  $ imat, nfail, nerrs, nout )
529  go to 40
530  ELSE IF( info.NE.0 ) THEN
531  go to 40
532  END IF
533 *
534 * Reconstruct matrix from factors and compute
535 * residual.
536 *
537  CALL zpbt01( uplo, n, kd, a, ldab, afac,
538  $ ldab, rwork, result( 1 ) )
539 *
540 * Compute residual of the computed solution.
541 *
542  CALL zlacpy( 'Full', n, nrhs, b, lda, work,
543  $ lda )
544  CALL zpbt02( uplo, n, kd, nrhs, a, ldab, x,
545  $ lda, work, lda, rwork,
546  $ result( 2 ) )
547 *
548 * Check solution from generated exact solution.
549 *
550  CALL zget04( n, nrhs, x, lda, xact, lda,
551  $ rcondc, result( 3 ) )
552  nt = 3
553 *
554 * Print information about the tests that did
555 * not pass the threshold.
556 *
557  DO 30 k = 1, nt
558  IF( result( k ).GE.thresh ) THEN
559  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
560  $ CALL aladhd( nout, path )
561  WRITE( nout, fmt = 9999 )'ZPBSV ',
562  $ uplo, n, kd, imat, k, result( k )
563  nfail = nfail + 1
564  END IF
565  30 continue
566  nrun = nrun + nt
567  40 continue
568  END IF
569 *
570 * --- Test ZPBSVX ---
571 *
572  IF( .NOT.prefac )
573  $ CALL zlaset( 'Full', kd+1, n, dcmplx( zero ),
574  $ dcmplx( zero ), afac, ldab )
575  CALL zlaset( 'Full', n, nrhs, dcmplx( zero ),
576  $ dcmplx( zero ), x, lda )
577  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
578 *
579 * Equilibrate the matrix if FACT='F' and
580 * EQUED='Y'
581 *
582  CALL zlaqhb( uplo, n, kd, a, ldab, s, scond,
583  $ amax, equed )
584  END IF
585 *
586 * Solve the system and compute the condition
587 * number and error bounds using ZPBSVX.
588 *
589  srnamt = 'ZPBSVX'
590  CALL zpbsvx( fact, uplo, n, kd, nrhs, a, ldab,
591  $ afac, ldab, equed, s, b, lda, x,
592  $ lda, rcond, rwork, rwork( nrhs+1 ),
593  $ work, rwork( 2*nrhs+1 ), info )
594 *
595 * Check the error code from ZPBSVX.
596 *
597  IF( info.NE.izero ) THEN
598  CALL alaerh( path, 'ZPBSVX', info, izero,
599  $ fact // uplo, n, n, kd, kd,
600  $ nrhs, imat, nfail, nerrs, nout )
601  go to 60
602  END IF
603 *
604  IF( info.EQ.0 ) THEN
605  IF( .NOT.prefac ) THEN
606 *
607 * Reconstruct matrix from factors and
608 * compute residual.
609 *
610  CALL zpbt01( uplo, n, kd, a, ldab, afac,
611  $ ldab, rwork( 2*nrhs+1 ),
612  $ result( 1 ) )
613  k1 = 1
614  ELSE
615  k1 = 2
616  END IF
617 *
618 * Compute residual of the computed solution.
619 *
620  CALL zlacpy( 'Full', n, nrhs, bsav, lda,
621  $ work, lda )
622  CALL zpbt02( uplo, n, kd, nrhs, asav, ldab,
623  $ x, lda, work, lda,
624  $ rwork( 2*nrhs+1 ), result( 2 ) )
625 *
626 * Check solution from generated exact solution.
627 *
628  IF( nofact .OR. ( prefac .AND. lsame( equed,
629  $ 'N' ) ) ) THEN
630  CALL zget04( n, nrhs, x, lda, xact, lda,
631  $ rcondc, result( 3 ) )
632  ELSE
633  CALL zget04( n, nrhs, x, lda, xact, lda,
634  $ roldc, result( 3 ) )
635  END IF
636 *
637 * Check the error bounds from iterative
638 * refinement.
639 *
640  CALL zpbt05( uplo, n, kd, nrhs, asav, ldab,
641  $ b, lda, x, lda, xact, lda,
642  $ rwork, rwork( nrhs+1 ),
643  $ result( 4 ) )
644  ELSE
645  k1 = 6
646  END IF
647 *
648 * Compare RCOND from ZPBSVX with the computed
649 * value in RCONDC.
650 *
651  result( 6 ) = dget06( rcond, rcondc )
652 *
653 * Print information about the tests that did not
654 * pass the threshold.
655 *
656  DO 50 k = k1, 6
657  IF( result( k ).GE.thresh ) THEN
658  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
659  $ CALL aladhd( nout, path )
660  IF( prefac ) THEN
661  WRITE( nout, fmt = 9997 )'ZPBSVX',
662  $ fact, uplo, n, kd, equed, imat, k,
663  $ result( k )
664  ELSE
665  WRITE( nout, fmt = 9998 )'ZPBSVX',
666  $ fact, uplo, n, kd, imat, k,
667  $ result( k )
668  END IF
669  nfail = nfail + 1
670  END IF
671  50 continue
672  nrun = nrun + 7 - k1
673  60 continue
674  70 continue
675  80 continue
676  90 continue
677  100 continue
678  110 continue
679 *
680 * Print a summary of the results.
681 *
682  CALL alasvm( path, nout, nfail, nrun, nerrs )
683 *
684  9999 format( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', KD =', i5,
685  $ ', type ', i1, ', test(', i1, ')=', g12.5 )
686  9998 format( 1x, a, '( ''', a1, ''', ''', a1, ''', ', i5, ', ', i5,
687  $ ', ... ), type ', i1, ', test(', i1, ')=', g12.5 )
688  9997 format( 1x, a, '( ''', a1, ''', ''', a1, ''', ', i5, ', ', i5,
689  $ ', ... ), EQUED=''', a1, ''', type ', i1, ', test(', i1,
690  $ ')=', g12.5 )
691  return
692 *
693 * End of ZDRVPB
694 *
695  END