LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
cdrvpp.f
Go to the documentation of this file.
1 *> \brief \b CDRVPP
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CDRVPP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
12 * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
13 * RWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NOUT, NRHS
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER NVAL( * )
23 * REAL RWORK( * ), S( * )
24 * COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
25 * $ BSAV( * ), WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> CDRVPP tests the driver routines CPPSV and -SVX.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NN
49 *> \verbatim
50 *> NN is INTEGER
51 *> The number of values of N contained in the vector NVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] NVAL
55 *> \verbatim
56 *> NVAL is INTEGER array, dimension (NN)
57 *> The values of the matrix dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NRHS
61 *> \verbatim
62 *> NRHS is INTEGER
63 *> The number of right hand side vectors to be generated for
64 *> each linear system.
65 *> \endverbatim
66 *>
67 *> \param[in] THRESH
68 *> \verbatim
69 *> THRESH is REAL
70 *> The threshold value for the test ratios. A result is
71 *> included in the output file if RESULT >= THRESH. To have
72 *> every test ratio printed, use THRESH = 0.
73 *> \endverbatim
74 *>
75 *> \param[in] TSTERR
76 *> \verbatim
77 *> TSTERR is LOGICAL
78 *> Flag that indicates whether error exits are to be tested.
79 *> \endverbatim
80 *>
81 *> \param[in] NMAX
82 *> \verbatim
83 *> NMAX is INTEGER
84 *> The maximum value permitted for N, used in dimensioning the
85 *> work arrays.
86 *> \endverbatim
87 *>
88 *> \param[out] A
89 *> \verbatim
90 *> A is COMPLEX array, dimension (NMAX*(NMAX+1)/2)
91 *> \endverbatim
92 *>
93 *> \param[out] AFAC
94 *> \verbatim
95 *> AFAC is COMPLEX array, dimension (NMAX*(NMAX+1)/2)
96 *> \endverbatim
97 *>
98 *> \param[out] ASAV
99 *> \verbatim
100 *> ASAV is COMPLEX array, dimension (NMAX*(NMAX+1)/2)
101 *> \endverbatim
102 *>
103 *> \param[out] B
104 *> \verbatim
105 *> B is COMPLEX array, dimension (NMAX*NRHS)
106 *> \endverbatim
107 *>
108 *> \param[out] BSAV
109 *> \verbatim
110 *> BSAV is COMPLEX array, dimension (NMAX*NRHS)
111 *> \endverbatim
112 *>
113 *> \param[out] X
114 *> \verbatim
115 *> X is COMPLEX array, dimension (NMAX*NRHS)
116 *> \endverbatim
117 *>
118 *> \param[out] XACT
119 *> \verbatim
120 *> XACT is COMPLEX array, dimension (NMAX*NRHS)
121 *> \endverbatim
122 *>
123 *> \param[out] S
124 *> \verbatim
125 *> S is REAL array, dimension (NMAX)
126 *> \endverbatim
127 *>
128 *> \param[out] WORK
129 *> \verbatim
130 *> WORK is COMPLEX array, dimension
131 *> (NMAX*max(3,NRHS))
132 *> \endverbatim
133 *>
134 *> \param[out] RWORK
135 *> \verbatim
136 *> RWORK is REAL array, dimension (NMAX+2*NRHS)
137 *> \endverbatim
138 *>
139 *> \param[in] NOUT
140 *> \verbatim
141 *> NOUT is INTEGER
142 *> The unit number for output.
143 *> \endverbatim
144 *
145 * Authors:
146 * ========
147 *
148 *> \author Univ. of Tennessee
149 *> \author Univ. of California Berkeley
150 *> \author Univ. of Colorado Denver
151 *> \author NAG Ltd.
152 *
153 *> \ingroup complex_lin
154 *
155 * =====================================================================
156  SUBROUTINE cdrvpp( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
157  $ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
158  $ RWORK, NOUT )
159 *
160 * -- LAPACK test routine --
161 * -- LAPACK is a software package provided by Univ. of Tennessee, --
162 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
163 *
164 * .. Scalar Arguments ..
165  LOGICAL TSTERR
166  INTEGER NMAX, NN, NOUT, NRHS
167  REAL THRESH
168 * ..
169 * .. Array Arguments ..
170  LOGICAL DOTYPE( * )
171  INTEGER NVAL( * )
172  REAL RWORK( * ), S( * )
173  COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
174  $ bsav( * ), work( * ), x( * ), xact( * )
175 * ..
176 *
177 * =====================================================================
178 *
179 * .. Parameters ..
180  REAL ONE, ZERO
181  PARAMETER ( ONE = 1.0e+0, zero = 0.0e+0 )
182  INTEGER NTYPES
183  parameter( ntypes = 9 )
184  INTEGER NTESTS
185  parameter( ntests = 6 )
186 * ..
187 * .. Local Scalars ..
188  LOGICAL EQUIL, NOFACT, PREFAC, ZEROT
189  CHARACTER DIST, EQUED, FACT, PACKIT, TYPE, UPLO, XTYPE
190  CHARACTER*3 PATH
191  INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
192  $ izero, k, k1, kl, ku, lda, mode, n, nerrs,
193  $ nfact, nfail, nimat, npp, nrun, nt
194  REAL AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
195  $ ROLDC, SCOND
196 * ..
197 * .. Local Arrays ..
198  CHARACTER EQUEDS( 2 ), FACTS( 3 ), PACKS( 2 ), UPLOS( 2 )
199  INTEGER ISEED( 4 ), ISEEDY( 4 )
200  REAL RESULT( NTESTS )
201 * ..
202 * .. External Functions ..
203  LOGICAL LSAME
204  REAL CLANHP, SGET06
205  EXTERNAL lsame, clanhp, sget06
206 * ..
207 * .. External Subroutines ..
208  EXTERNAL aladhd, alaerh, alasvm, ccopy, cerrvx, cget04,
211  $ cppt05, cpptrf, cpptri
212 * ..
213 * .. Scalars in Common ..
214  LOGICAL LERR, OK
215  CHARACTER*32 SRNAMT
216  INTEGER INFOT, NUNIT
217 * ..
218 * .. Common blocks ..
219  COMMON / infoc / infot, nunit, ok, lerr
220  COMMON / srnamc / srnamt
221 * ..
222 * .. Intrinsic Functions ..
223  INTRINSIC cmplx, max
224 * ..
225 * .. Data statements ..
226  DATA iseedy / 1988, 1989, 1990, 1991 /
227  DATA uplos / 'U', 'L' / , facts / 'F', 'N', 'E' / ,
228  $ packs / 'C', 'R' / , equeds / 'N', 'Y' /
229 * ..
230 * .. Executable Statements ..
231 *
232 * Initialize constants and the random number seed.
233 *
234  path( 1: 1 ) = 'Complex precision'
235  path( 2: 3 ) = 'PP'
236  nrun = 0
237  nfail = 0
238  nerrs = 0
239  DO 10 i = 1, 4
240  iseed( i ) = iseedy( i )
241  10 CONTINUE
242 *
243 * Test the error exits
244 *
245  IF( tsterr )
246  $ CALL cerrvx( path, nout )
247  infot = 0
248 *
249 * Do for each value of N in NVAL
250 *
251  DO 140 in = 1, nn
252  n = nval( in )
253  lda = max( n, 1 )
254  npp = n*( n+1 ) / 2
255  xtype = 'N'
256  nimat = ntypes
257  IF( n.LE.0 )
258  $ nimat = 1
259 *
260  DO 130 imat = 1, nimat
261 *
262 * Do the tests only if DOTYPE( IMAT ) is true.
263 *
264  IF( .NOT.dotype( imat ) )
265  $ GO TO 130
266 *
267 * Skip types 3, 4, or 5 if the matrix size is too small.
268 *
269  zerot = imat.GE.3 .AND. imat.LE.5
270  IF( zerot .AND. n.LT.imat-2 )
271  $ GO TO 130
272 *
273 * Do first for UPLO = 'U', then for UPLO = 'L'
274 *
275  DO 120 iuplo = 1, 2
276  uplo = uplos( iuplo )
277  packit = packs( iuplo )
278 *
279 * Set up parameters with CLATB4 and generate a test matrix
280 * with CLATMS.
281 *
282  CALL clatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
283  $ cndnum, dist )
284  rcondc = one / cndnum
285 *
286  srnamt = 'CLATMS'
287  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
288  $ cndnum, anorm, kl, ku, packit, a, lda, work,
289  $ info )
290 *
291 * Check error code from CLATMS.
292 *
293  IF( info.NE.0 ) THEN
294  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
295  $ -1, -1, imat, nfail, nerrs, nout )
296  GO TO 120
297  END IF
298 *
299 * For types 3-5, zero one row and column of the matrix to
300 * test that INFO is returned correctly.
301 *
302  IF( zerot ) THEN
303  IF( imat.EQ.3 ) THEN
304  izero = 1
305  ELSE IF( imat.EQ.4 ) THEN
306  izero = n
307  ELSE
308  izero = n / 2 + 1
309  END IF
310 *
311 * Set row and column IZERO of A to 0.
312 *
313  IF( iuplo.EQ.1 ) THEN
314  ioff = ( izero-1 )*izero / 2
315  DO 20 i = 1, izero - 1
316  a( ioff+i ) = zero
317  20 CONTINUE
318  ioff = ioff + izero
319  DO 30 i = izero, n
320  a( ioff ) = zero
321  ioff = ioff + i
322  30 CONTINUE
323  ELSE
324  ioff = izero
325  DO 40 i = 1, izero - 1
326  a( ioff ) = zero
327  ioff = ioff + n - i
328  40 CONTINUE
329  ioff = ioff - izero
330  DO 50 i = izero, n
331  a( ioff+i ) = zero
332  50 CONTINUE
333  END IF
334  ELSE
335  izero = 0
336  END IF
337 *
338 * Set the imaginary part of the diagonals.
339 *
340  IF( iuplo.EQ.1 ) THEN
341  CALL claipd( n, a, 2, 1 )
342  ELSE
343  CALL claipd( n, a, n, -1 )
344  END IF
345 *
346 * Save a copy of the matrix A in ASAV.
347 *
348  CALL ccopy( npp, a, 1, asav, 1 )
349 *
350  DO 110 iequed = 1, 2
351  equed = equeds( iequed )
352  IF( iequed.EQ.1 ) THEN
353  nfact = 3
354  ELSE
355  nfact = 1
356  END IF
357 *
358  DO 100 ifact = 1, nfact
359  fact = facts( ifact )
360  prefac = lsame( fact, 'F' )
361  nofact = lsame( fact, 'N' )
362  equil = lsame( fact, 'E' )
363 *
364  IF( zerot ) THEN
365  IF( prefac )
366  $ GO TO 100
367  rcondc = zero
368 *
369  ELSE IF( .NOT.lsame( fact, 'N' ) ) THEN
370 *
371 * Compute the condition number for comparison with
372 * the value returned by CPPSVX (FACT = 'N' reuses
373 * the condition number from the previous iteration
374 * with FACT = 'F').
375 *
376  CALL ccopy( npp, asav, 1, afac, 1 )
377  IF( equil .OR. iequed.GT.1 ) THEN
378 *
379 * Compute row and column scale factors to
380 * equilibrate the matrix A.
381 *
382  CALL cppequ( uplo, n, afac, s, scond, amax,
383  $ info )
384  IF( info.EQ.0 .AND. n.GT.0 ) THEN
385  IF( iequed.GT.1 )
386  $ scond = zero
387 *
388 * Equilibrate the matrix.
389 *
390  CALL claqhp( uplo, n, afac, s, scond,
391  $ amax, equed )
392  END IF
393  END IF
394 *
395 * Save the condition number of the
396 * non-equilibrated system for use in CGET04.
397 *
398  IF( equil )
399  $ roldc = rcondc
400 *
401 * Compute the 1-norm of A.
402 *
403  anorm = clanhp( '1', uplo, n, afac, rwork )
404 *
405 * Factor the matrix A.
406 *
407  CALL cpptrf( uplo, n, afac, info )
408 *
409 * Form the inverse of A.
410 *
411  CALL ccopy( npp, afac, 1, a, 1 )
412  CALL cpptri( uplo, n, a, info )
413 *
414 * Compute the 1-norm condition number of A.
415 *
416  ainvnm = clanhp( '1', uplo, n, a, rwork )
417  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
418  rcondc = one
419  ELSE
420  rcondc = ( one / anorm ) / ainvnm
421  END IF
422  END IF
423 *
424 * Restore the matrix A.
425 *
426  CALL ccopy( npp, asav, 1, a, 1 )
427 *
428 * Form an exact solution and set the right hand side.
429 *
430  srnamt = 'CLARHS'
431  CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
432  $ nrhs, a, lda, xact, lda, b, lda,
433  $ iseed, info )
434  xtype = 'C'
435  CALL clacpy( 'Full', n, nrhs, b, lda, bsav, lda )
436 *
437  IF( nofact ) THEN
438 *
439 * --- Test CPPSV ---
440 *
441 * Compute the L*L' or U'*U factorization of the
442 * matrix and solve the system.
443 *
444  CALL ccopy( npp, a, 1, afac, 1 )
445  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
446 *
447  srnamt = 'CPPSV '
448  CALL cppsv( uplo, n, nrhs, afac, x, lda, info )
449 *
450 * Check error code from CPPSV .
451 *
452  IF( info.NE.izero ) THEN
453  CALL alaerh( path, 'CPPSV ', info, izero,
454  $ uplo, n, n, -1, -1, nrhs, imat,
455  $ nfail, nerrs, nout )
456  GO TO 70
457  ELSE IF( info.NE.0 ) THEN
458  GO TO 70
459  END IF
460 *
461 * Reconstruct matrix from factors and compute
462 * residual.
463 *
464  CALL cppt01( uplo, n, a, afac, rwork,
465  $ result( 1 ) )
466 *
467 * Compute residual of the computed solution.
468 *
469  CALL clacpy( 'Full', n, nrhs, b, lda, work,
470  $ lda )
471  CALL cppt02( uplo, n, nrhs, a, x, lda, work,
472  $ lda, rwork, result( 2 ) )
473 *
474 * Check solution from generated exact solution.
475 *
476  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
477  $ result( 3 ) )
478  nt = 3
479 *
480 * Print information about the tests that did not
481 * pass the threshold.
482 *
483  DO 60 k = 1, nt
484  IF( result( k ).GE.thresh ) THEN
485  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
486  $ CALL aladhd( nout, path )
487  WRITE( nout, fmt = 9999 )'CPPSV ', uplo,
488  $ n, imat, k, result( k )
489  nfail = nfail + 1
490  END IF
491  60 CONTINUE
492  nrun = nrun + nt
493  70 CONTINUE
494  END IF
495 *
496 * --- Test CPPSVX ---
497 *
498  IF( .NOT.prefac .AND. npp.GT.0 )
499  $ CALL claset( 'Full', npp, 1, cmplx( zero ),
500  $ cmplx( zero ), afac, npp )
501  CALL claset( 'Full', n, nrhs, cmplx( zero ),
502  $ cmplx( zero ), x, lda )
503  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
504 *
505 * Equilibrate the matrix if FACT='F' and
506 * EQUED='Y'.
507 *
508  CALL claqhp( uplo, n, a, s, scond, amax, equed )
509  END IF
510 *
511 * Solve the system and compute the condition number
512 * and error bounds using CPPSVX.
513 *
514  srnamt = 'CPPSVX'
515  CALL cppsvx( fact, uplo, n, nrhs, a, afac, equed,
516  $ s, b, lda, x, lda, rcond, rwork,
517  $ rwork( nrhs+1 ), work,
518  $ rwork( 2*nrhs+1 ), info )
519 *
520 * Check the error code from CPPSVX.
521 *
522  IF( info.NE.izero ) THEN
523  CALL alaerh( path, 'CPPSVX', info, izero,
524  $ fact // uplo, n, n, -1, -1, nrhs,
525  $ imat, nfail, nerrs, nout )
526  GO TO 90
527  END IF
528 *
529  IF( info.EQ.0 ) THEN
530  IF( .NOT.prefac ) THEN
531 *
532 * Reconstruct matrix from factors and compute
533 * residual.
534 *
535  CALL cppt01( uplo, n, a, afac,
536  $ rwork( 2*nrhs+1 ), result( 1 ) )
537  k1 = 1
538  ELSE
539  k1 = 2
540  END IF
541 *
542 * Compute residual of the computed solution.
543 *
544  CALL clacpy( 'Full', n, nrhs, bsav, lda, work,
545  $ lda )
546  CALL cppt02( uplo, n, nrhs, asav, x, lda, work,
547  $ lda, rwork( 2*nrhs+1 ),
548  $ result( 2 ) )
549 *
550 * Check solution from generated exact solution.
551 *
552  IF( nofact .OR. ( prefac .AND. lsame( equed,
553  $ 'N' ) ) ) THEN
554  CALL cget04( n, nrhs, x, lda, xact, lda,
555  $ rcondc, result( 3 ) )
556  ELSE
557  CALL cget04( n, nrhs, x, lda, xact, lda,
558  $ roldc, result( 3 ) )
559  END IF
560 *
561 * Check the error bounds from iterative
562 * refinement.
563 *
564  CALL cppt05( uplo, n, nrhs, asav, b, lda, x,
565  $ lda, xact, lda, rwork,
566  $ rwork( nrhs+1 ), result( 4 ) )
567  ELSE
568  k1 = 6
569  END IF
570 *
571 * Compare RCOND from CPPSVX with the computed value
572 * in RCONDC.
573 *
574  result( 6 ) = sget06( rcond, rcondc )
575 *
576 * Print information about the tests that did not pass
577 * the threshold.
578 *
579  DO 80 k = k1, 6
580  IF( result( k ).GE.thresh ) THEN
581  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
582  $ CALL aladhd( nout, path )
583  IF( prefac ) THEN
584  WRITE( nout, fmt = 9997 )'CPPSVX', fact,
585  $ uplo, n, equed, imat, k, result( k )
586  ELSE
587  WRITE( nout, fmt = 9998 )'CPPSVX', fact,
588  $ uplo, n, imat, k, result( k )
589  END IF
590  nfail = nfail + 1
591  END IF
592  80 CONTINUE
593  nrun = nrun + 7 - k1
594  90 CONTINUE
595  100 CONTINUE
596  110 CONTINUE
597  120 CONTINUE
598  130 CONTINUE
599  140 CONTINUE
600 *
601 * Print a summary of the results.
602 *
603  CALL alasvm( path, nout, nfail, nrun, nerrs )
604 *
605  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i1,
606  $ ', test(', i1, ')=', g12.5 )
607  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
608  $ ', type ', i1, ', test(', i1, ')=', g12.5 )
609  9997 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
610  $ ', EQUED=''', a1, ''', type ', i1, ', test(', i1, ')=',
611  $ g12.5 )
612  RETURN
613 *
614 * End of CDRVPP
615 *
616  END
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:90
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:81
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine cppt02(UPLO, N, NRHS, A, X, LDX, B, LDB, RWORK, RESID)
CPPT02
Definition: cppt02.f:123
subroutine cppt01(UPLO, N, A, AFAC, RWORK, RESID)
CPPT01
Definition: cppt01.f:95
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:102
subroutine cppt05(UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
CPPT05
Definition: cppt05.f:157
subroutine claipd(N, A, INDA, VINDA)
CLAIPD
Definition: claipd.f:83
subroutine cerrvx(PATH, NUNIT)
CERRVX
Definition: cerrvx.f:55
subroutine cdrvpp(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, NOUT)
CDRVPP
Definition: cdrvpp.f:159
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:106
subroutine claqhp(UPLO, N, AP, S, SCOND, AMAX, EQUED)
CLAQHP scales a Hermitian matrix stored in packed form.
Definition: claqhp.f:126
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine cppequ(UPLO, N, AP, S, SCOND, AMAX, INFO)
CPPEQU
Definition: cppequ.f:117
subroutine cpptri(UPLO, N, AP, INFO)
CPPTRI
Definition: cpptri.f:93
subroutine cpptrf(UPLO, N, AP, INFO)
CPPTRF
Definition: cpptrf.f:119
subroutine cppsvx(FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
CPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices
Definition: cppsvx.f:311
subroutine cppsv(UPLO, N, NRHS, AP, B, LDB, INFO)
CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Definition: cppsv.f:144