LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cppsvx()

subroutine cppsvx ( character fact,
character uplo,
integer n,
integer nrhs,
complex, dimension( * ) ap,
complex, dimension( * ) afp,
character equed,
real, dimension( * ) s,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( ldx, * ) x,
integer ldx,
real rcond,
real, dimension( * ) ferr,
real, dimension( * ) berr,
complex, dimension( * ) work,
real, dimension( * ) rwork,
integer info )

CPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices

Download CPPSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CPPSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
!> compute the solution to a complex system of linear equations
!>    A * X = B,
!> where A is an N-by-N Hermitian positive definite matrix stored in
!> packed format and X and B are N-by-NRHS matrices.
!>
!> Error bounds on the solution and a condition estimate are also
!> provided.
!> 
Description:
!>
!> The following steps are performed:
!>
!> 1. If FACT = 'E', real scaling factors are computed to equilibrate
!>    the system:
!>       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
!>    Whether or not the system will be equilibrated depends on the
!>    scaling of the matrix A, but if equilibration is used, A is
!>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
!>
!> 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
!>    factor the matrix A (after equilibration if FACT = 'E') as
!>       A = U**H * U ,  if UPLO = 'U', or
!>       A = L * L**H,  if UPLO = 'L',
!>    where U is an upper triangular matrix, L is a lower triangular
!>    matrix, and **H indicates conjugate transpose.
!>
!> 3. If the leading principal minor of order i is not positive,
!>    then the routine returns with INFO = i. Otherwise, the factored
!>    form of A is used to estimate the condition number of the matrix
!>    A.  If the reciprocal of the condition number is less than machine
!>    precision, INFO = N+1 is returned as a warning, but the routine
!>    still goes on to solve for X and compute error bounds as
!>    described below.
!>
!> 4. The system of equations is solved for X using the factored form
!>    of A.
!>
!> 5. Iterative refinement is applied to improve the computed solution
!>    matrix and calculate error bounds and backward error estimates
!>    for it.
!>
!> 6. If equilibration was used, the matrix X is premultiplied by
!>    diag(S) so that it solves the original system before
!>    equilibration.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>          Specifies whether or not the factored form of the matrix A is
!>          supplied on entry, and if not, whether the matrix A should be
!>          equilibrated before it is factored.
!>          = 'F':  On entry, AFP contains the factored form of A.
!>                  If EQUED = 'Y', the matrix A has been equilibrated
!>                  with scaling factors given by S.  AP and AFP will not
!>                  be modified.
!>          = 'N':  The matrix A will be copied to AFP and factored.
!>          = 'E':  The matrix A will be equilibrated if necessary, then
!>                  copied to AFP and factored.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 
[in,out]AP
!>          AP is COMPLEX array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the Hermitian matrix
!>          A, packed columnwise in a linear array, except if FACT = 'F'
!>          and EQUED = 'Y', then A must contain the equilibrated matrix
!>          diag(S)*A*diag(S).  The j-th column of A is stored in the
!>          array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
!>          See below for further details.  A is not modified if
!>          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
!>
!>          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
!>          diag(S)*A*diag(S).
!> 
[in,out]AFP
!>          AFP is COMPLEX array, dimension (N*(N+1)/2)
!>          If FACT = 'F', then AFP is an input argument and on entry
!>          contains the triangular factor U or L from the Cholesky
!>          factorization A = U**H*U or A = L*L**H, in the same storage
!>          format as A.  If EQUED .ne. 'N', then AFP is the factored
!>          form of the equilibrated matrix A.
!>
!>          If FACT = 'N', then AFP is an output argument and on exit
!>          returns the triangular factor U or L from the Cholesky
!>          factorization A = U**H * U or A = L * L**H of the original
!>          matrix A.
!>
!>          If FACT = 'E', then AFP is an output argument and on exit
!>          returns the triangular factor U or L from the Cholesky
!>          factorization A = U**H*U or A = L*L**H of the equilibrated
!>          matrix A (see the description of AP for the form of the
!>          equilibrated matrix).
!> 
[in,out]EQUED
!>          EQUED is CHARACTER*1
!>          Specifies the form of equilibration that was done.
!>          = 'N':  No equilibration (always true if FACT = 'N').
!>          = 'Y':  Equilibration was done, i.e., A has been replaced by
!>                  diag(S) * A * diag(S).
!>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
!>          output argument.
!> 
[in,out]S
!>          S is REAL array, dimension (N)
!>          The scale factors for A; not accessed if EQUED = 'N'.  S is
!>          an input argument if FACT = 'F'; otherwise, S is an output
!>          argument.  If FACT = 'F' and EQUED = 'Y', each element of S
!>          must be positive.
!> 
[in,out]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
!>          B is overwritten by diag(S) * B.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is COMPLEX array, dimension (LDX,NRHS)
!>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
!>          the original system of equations.  Note that if EQUED = 'Y',
!>          A and B are modified on exit, and the solution to the
!>          equilibrated system is inv(diag(S))*X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is REAL
!>          The estimate of the reciprocal condition number of the matrix
!>          A after equilibration (if done).  If RCOND is less than the
!>          machine precision (in particular, if RCOND = 0), the matrix
!>          is singular to working precision.  This condition is
!>          indicated by a return code of INFO > 0.
!> 
[out]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (2*N)
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, and i is
!>                <= N:  the leading principal minor of order i of A
!>                       is not positive, so the factorization could not
!>                       be completed, and the solution has not been
!>                       computed. RCOND = 0 is returned.
!>                = N+1: U is nonsingular, but RCOND is less than machine
!>                       precision, meaning that the matrix is singular
!>                       to working precision.  Nevertheless, the
!>                       solution and error bounds are computed because
!>                       there are a number of situations where the
!>                       computed solution can be more accurate than the
!>                       value of RCOND would suggest.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The packed storage scheme is illustrated by the following example
!>  when N = 4, UPLO = 'U':
!>
!>  Two-dimensional storage of the Hermitian matrix A:
!>
!>     a11 a12 a13 a14
!>         a22 a23 a24
!>             a33 a34     (aij = conjg(aji))
!>                 a44
!>
!>  Packed storage of the upper triangle of A:
!>
!>  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
!> 

Definition at line 307 of file cppsvx.f.

310*
311* -- LAPACK driver routine --
312* -- LAPACK is a software package provided by Univ. of Tennessee, --
313* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
314*
315* .. Scalar Arguments ..
316 CHARACTER EQUED, FACT, UPLO
317 INTEGER INFO, LDB, LDX, N, NRHS
318 REAL RCOND
319* ..
320* .. Array Arguments ..
321 REAL BERR( * ), FERR( * ), RWORK( * ), S( * )
322 COMPLEX AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
323 $ X( LDX, * )
324* ..
325*
326* =====================================================================
327*
328* .. Parameters ..
329 REAL ZERO, ONE
330 parameter( zero = 0.0e+0, one = 1.0e+0 )
331* ..
332* .. Local Scalars ..
333 LOGICAL EQUIL, NOFACT, RCEQU
334 INTEGER I, INFEQU, J
335 REAL AMAX, ANORM, BIGNUM, SCOND, SMAX, SMIN, SMLNUM
336* ..
337* .. External Functions ..
338 LOGICAL LSAME
339 REAL CLANHP, SLAMCH
340 EXTERNAL lsame, clanhp, slamch
341* ..
342* .. External Subroutines ..
343 EXTERNAL ccopy, clacpy, claqhp, cppcon, cppequ,
344 $ cpprfs,
346* ..
347* .. Intrinsic Functions ..
348 INTRINSIC max, min
349* ..
350* .. Executable Statements ..
351*
352 info = 0
353 nofact = lsame( fact, 'N' )
354 equil = lsame( fact, 'E' )
355 IF( nofact .OR. equil ) THEN
356 equed = 'N'
357 rcequ = .false.
358 ELSE
359 rcequ = lsame( equed, 'Y' )
360 smlnum = slamch( 'Safe minimum' )
361 bignum = one / smlnum
362 END IF
363*
364* Test the input parameters.
365*
366 IF( .NOT.nofact .AND.
367 $ .NOT.equil .AND.
368 $ .NOT.lsame( fact, 'F' ) )
369 $ THEN
370 info = -1
371 ELSE IF( .NOT.lsame( uplo, 'U' ) .AND.
372 $ .NOT.lsame( uplo, 'L' ) )
373 $ THEN
374 info = -2
375 ELSE IF( n.LT.0 ) THEN
376 info = -3
377 ELSE IF( nrhs.LT.0 ) THEN
378 info = -4
379 ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
380 $ ( rcequ .OR. lsame( equed, 'N' ) ) ) THEN
381 info = -7
382 ELSE
383 IF( rcequ ) THEN
384 smin = bignum
385 smax = zero
386 DO 10 j = 1, n
387 smin = min( smin, s( j ) )
388 smax = max( smax, s( j ) )
389 10 CONTINUE
390 IF( smin.LE.zero ) THEN
391 info = -8
392 ELSE IF( n.GT.0 ) THEN
393 scond = max( smin, smlnum ) / min( smax, bignum )
394 ELSE
395 scond = one
396 END IF
397 END IF
398 IF( info.EQ.0 ) THEN
399 IF( ldb.LT.max( 1, n ) ) THEN
400 info = -10
401 ELSE IF( ldx.LT.max( 1, n ) ) THEN
402 info = -12
403 END IF
404 END IF
405 END IF
406*
407 IF( info.NE.0 ) THEN
408 CALL xerbla( 'CPPSVX', -info )
409 RETURN
410 END IF
411*
412 IF( equil ) THEN
413*
414* Compute row and column scalings to equilibrate the matrix A.
415*
416 CALL cppequ( uplo, n, ap, s, scond, amax, infequ )
417 IF( infequ.EQ.0 ) THEN
418*
419* Equilibrate the matrix.
420*
421 CALL claqhp( uplo, n, ap, s, scond, amax, equed )
422 rcequ = lsame( equed, 'Y' )
423 END IF
424 END IF
425*
426* Scale the right-hand side.
427*
428 IF( rcequ ) THEN
429 DO 30 j = 1, nrhs
430 DO 20 i = 1, n
431 b( i, j ) = s( i )*b( i, j )
432 20 CONTINUE
433 30 CONTINUE
434 END IF
435*
436 IF( nofact .OR. equil ) THEN
437*
438* Compute the Cholesky factorization A = U**H * U or A = L * L**H.
439*
440 CALL ccopy( n*( n+1 ) / 2, ap, 1, afp, 1 )
441 CALL cpptrf( uplo, n, afp, info )
442*
443* Return if INFO is non-zero.
444*
445 IF( info.GT.0 )THEN
446 rcond = zero
447 RETURN
448 END IF
449 END IF
450*
451* Compute the norm of the matrix A.
452*
453 anorm = clanhp( 'I', uplo, n, ap, rwork )
454*
455* Compute the reciprocal of the condition number of A.
456*
457 CALL cppcon( uplo, n, afp, anorm, rcond, work, rwork, info )
458*
459* Compute the solution matrix X.
460*
461 CALL clacpy( 'Full', n, nrhs, b, ldb, x, ldx )
462 CALL cpptrs( uplo, n, nrhs, afp, x, ldx, info )
463*
464* Use iterative refinement to improve the computed solution and
465* compute error bounds and backward error estimates for it.
466*
467 CALL cpprfs( uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr,
468 $ berr,
469 $ work, rwork, info )
470*
471* Transform the solution matrix X to a solution of the original
472* system.
473*
474 IF( rcequ ) THEN
475 DO 50 j = 1, nrhs
476 DO 40 i = 1, n
477 x( i, j ) = s( i )*x( i, j )
478 40 CONTINUE
479 50 CONTINUE
480 DO 60 j = 1, nrhs
481 ferr( j ) = ferr( j ) / scond
482 60 CONTINUE
483 END IF
484*
485* Set INFO = N+1 if the matrix is singular to working precision.
486*
487 IF( rcond.LT.slamch( 'Epsilon' ) )
488 $ info = n + 1
489*
490 RETURN
491*
492* End of CPPSVX
493*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clanhp(norm, uplo, n, ap, work)
CLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clanhp.f:115
subroutine claqhp(uplo, n, ap, s, scond, amax, equed)
CLAQHP scales a Hermitian matrix stored in packed form.
Definition claqhp.f:124
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine cppcon(uplo, n, ap, anorm, rcond, work, rwork, info)
CPPCON
Definition cppcon.f:117
subroutine cppequ(uplo, n, ap, s, scond, amax, info)
CPPEQU
Definition cppequ.f:115
subroutine cpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CPPRFS
Definition cpprfs.f:170
subroutine cpptrf(uplo, n, ap, info)
CPPTRF
Definition cpptrf.f:117
subroutine cpptrs(uplo, n, nrhs, ap, b, ldb, info)
CPPTRS
Definition cpptrs.f:106
Here is the call graph for this function:
Here is the caller graph for this function: