LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cpprfs()

subroutine cpprfs ( character uplo,
integer n,
integer nrhs,
complex, dimension( * ) ap,
complex, dimension( * ) afp,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( ldx, * ) x,
integer ldx,
real, dimension( * ) ferr,
real, dimension( * ) berr,
complex, dimension( * ) work,
real, dimension( * ) rwork,
integer info )

CPPRFS

Download CPPRFS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CPPRFS improves the computed solution to a system of linear
!> equations when the coefficient matrix is Hermitian positive definite
!> and packed, and provides error bounds and backward error estimates
!> for the solution.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices B and X.  NRHS >= 0.
!> 
[in]AP
!>          AP is COMPLEX array, dimension (N*(N+1)/2)
!>          The upper or lower triangle of the Hermitian matrix A, packed
!>          columnwise in a linear array.  The j-th column of A is stored
!>          in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
!> 
[in]AFP
!>          AFP is COMPLEX array, dimension (N*(N+1)/2)
!>          The triangular factor U or L from the Cholesky factorization
!>          A = U**H*U or A = L*L**H, as computed by SPPTRF/CPPTRF,
!>          packed columnwise in a linear array in the same format as A
!>          (see AP).
!> 
[in]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          The right hand side matrix B.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in,out]X
!>          X is COMPLEX array, dimension (LDX,NRHS)
!>          On entry, the solution matrix X, as computed by CPPTRS.
!>          On exit, the improved solution matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bound for each solution vector
!>          X(j) (the j-th column of the solution matrix X).
!>          If XTRUE is the true solution corresponding to X(j), FERR(j)
!>          is an estimated upper bound for the magnitude of the largest
!>          element in (X(j) - XTRUE) divided by the magnitude of the
!>          largest element in X(j).  The estimate is as reliable as
!>          the estimate for RCOND, and is almost always a slight
!>          overestimate of the true error.
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector X(j) (i.e., the smallest relative change in
!>          any element of A or B that makes X(j) an exact solution).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (2*N)
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Internal Parameters:
!>  ITMAX is the maximum number of steps of iterative refinement.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 167 of file cpprfs.f.

170*
171* -- LAPACK computational routine --
172* -- LAPACK is a software package provided by Univ. of Tennessee, --
173* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
174*
175* .. Scalar Arguments ..
176 CHARACTER UPLO
177 INTEGER INFO, LDB, LDX, N, NRHS
178* ..
179* .. Array Arguments ..
180 REAL BERR( * ), FERR( * ), RWORK( * )
181 COMPLEX AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
182 $ X( LDX, * )
183* ..
184*
185* ====================================================================
186*
187* .. Parameters ..
188 INTEGER ITMAX
189 parameter( itmax = 5 )
190 REAL ZERO
191 parameter( zero = 0.0e+0 )
192 COMPLEX CONE
193 parameter( cone = ( 1.0e+0, 0.0e+0 ) )
194 REAL TWO
195 parameter( two = 2.0e+0 )
196 REAL THREE
197 parameter( three = 3.0e+0 )
198* ..
199* .. Local Scalars ..
200 LOGICAL UPPER
201 INTEGER COUNT, I, IK, J, K, KASE, KK, NZ
202 REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
203 COMPLEX ZDUM
204* ..
205* .. Local Arrays ..
206 INTEGER ISAVE( 3 )
207* ..
208* .. External Subroutines ..
209 EXTERNAL caxpy, ccopy, chpmv, clacn2, cpptrs,
210 $ xerbla
211* ..
212* .. Intrinsic Functions ..
213 INTRINSIC abs, aimag, max, real
214* ..
215* .. External Functions ..
216 LOGICAL LSAME
217 REAL SLAMCH
218 EXTERNAL lsame, slamch
219* ..
220* .. Statement Functions ..
221 REAL CABS1
222* ..
223* .. Statement Function definitions ..
224 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
225* ..
226* .. Executable Statements ..
227*
228* Test the input parameters.
229*
230 info = 0
231 upper = lsame( uplo, 'U' )
232 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
233 info = -1
234 ELSE IF( n.LT.0 ) THEN
235 info = -2
236 ELSE IF( nrhs.LT.0 ) THEN
237 info = -3
238 ELSE IF( ldb.LT.max( 1, n ) ) THEN
239 info = -7
240 ELSE IF( ldx.LT.max( 1, n ) ) THEN
241 info = -9
242 END IF
243 IF( info.NE.0 ) THEN
244 CALL xerbla( 'CPPRFS', -info )
245 RETURN
246 END IF
247*
248* Quick return if possible
249*
250 IF( n.EQ.0 .OR. nrhs.EQ.0 ) THEN
251 DO 10 j = 1, nrhs
252 ferr( j ) = zero
253 berr( j ) = zero
254 10 CONTINUE
255 RETURN
256 END IF
257*
258* NZ = maximum number of nonzero elements in each row of A, plus 1
259*
260 nz = n + 1
261 eps = slamch( 'Epsilon' )
262 safmin = slamch( 'Safe minimum' )
263 safe1 = real( nz )*safmin
264 safe2 = safe1 / eps
265*
266* Do for each right hand side
267*
268 DO 140 j = 1, nrhs
269*
270 count = 1
271 lstres = three
272 20 CONTINUE
273*
274* Loop until stopping criterion is satisfied.
275*
276* Compute residual R = B - A * X
277*
278 CALL ccopy( n, b( 1, j ), 1, work, 1 )
279 CALL chpmv( uplo, n, -cone, ap, x( 1, j ), 1, cone, work,
280 $ 1 )
281*
282* Compute componentwise relative backward error from formula
283*
284* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
285*
286* where abs(Z) is the componentwise absolute value of the matrix
287* or vector Z. If the i-th component of the denominator is less
288* than SAFE2, then SAFE1 is added to the i-th components of the
289* numerator and denominator before dividing.
290*
291 DO 30 i = 1, n
292 rwork( i ) = cabs1( b( i, j ) )
293 30 CONTINUE
294*
295* Compute abs(A)*abs(X) + abs(B).
296*
297 kk = 1
298 IF( upper ) THEN
299 DO 50 k = 1, n
300 s = zero
301 xk = cabs1( x( k, j ) )
302 ik = kk
303 DO 40 i = 1, k - 1
304 rwork( i ) = rwork( i ) + cabs1( ap( ik ) )*xk
305 s = s + cabs1( ap( ik ) )*cabs1( x( i, j ) )
306 ik = ik + 1
307 40 CONTINUE
308 rwork( k ) = rwork( k ) + abs( real( ap( kk+k-1 ) ) )*
309 $ xk + s
310 kk = kk + k
311 50 CONTINUE
312 ELSE
313 DO 70 k = 1, n
314 s = zero
315 xk = cabs1( x( k, j ) )
316 rwork( k ) = rwork( k ) + abs( real( ap( kk ) ) )*xk
317 ik = kk + 1
318 DO 60 i = k + 1, n
319 rwork( i ) = rwork( i ) + cabs1( ap( ik ) )*xk
320 s = s + cabs1( ap( ik ) )*cabs1( x( i, j ) )
321 ik = ik + 1
322 60 CONTINUE
323 rwork( k ) = rwork( k ) + s
324 kk = kk + ( n-k+1 )
325 70 CONTINUE
326 END IF
327 s = zero
328 DO 80 i = 1, n
329 IF( rwork( i ).GT.safe2 ) THEN
330 s = max( s, cabs1( work( i ) ) / rwork( i ) )
331 ELSE
332 s = max( s, ( cabs1( work( i ) )+safe1 ) /
333 $ ( rwork( i )+safe1 ) )
334 END IF
335 80 CONTINUE
336 berr( j ) = s
337*
338* Test stopping criterion. Continue iterating if
339* 1) The residual BERR(J) is larger than machine epsilon, and
340* 2) BERR(J) decreased by at least a factor of 2 during the
341* last iteration, and
342* 3) At most ITMAX iterations tried.
343*
344 IF( berr( j ).GT.eps .AND. two*berr( j ).LE.lstres .AND.
345 $ count.LE.itmax ) THEN
346*
347* Update solution and try again.
348*
349 CALL cpptrs( uplo, n, 1, afp, work, n, info )
350 CALL caxpy( n, cone, work, 1, x( 1, j ), 1 )
351 lstres = berr( j )
352 count = count + 1
353 GO TO 20
354 END IF
355*
356* Bound error from formula
357*
358* norm(X - XTRUE) / norm(X) .le. FERR =
359* norm( abs(inv(A))*
360* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
361*
362* where
363* norm(Z) is the magnitude of the largest component of Z
364* inv(A) is the inverse of A
365* abs(Z) is the componentwise absolute value of the matrix or
366* vector Z
367* NZ is the maximum number of nonzeros in any row of A, plus 1
368* EPS is machine epsilon
369*
370* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
371* is incremented by SAFE1 if the i-th component of
372* abs(A)*abs(X) + abs(B) is less than SAFE2.
373*
374* Use CLACN2 to estimate the infinity-norm of the matrix
375* inv(A) * diag(W),
376* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
377*
378 DO 90 i = 1, n
379 IF( rwork( i ).GT.safe2 ) THEN
380 rwork( i ) = cabs1( work( i ) ) + real( nz )*
381 $ eps*rwork( i )
382 ELSE
383 rwork( i ) = cabs1( work( i ) ) + real( nz )*
384 $ eps*rwork( i ) + safe1
385 END IF
386 90 CONTINUE
387*
388 kase = 0
389 100 CONTINUE
390 CALL clacn2( n, work( n+1 ), work, ferr( j ), kase, isave )
391 IF( kase.NE.0 ) THEN
392 IF( kase.EQ.1 ) THEN
393*
394* Multiply by diag(W)*inv(A**H).
395*
396 CALL cpptrs( uplo, n, 1, afp, work, n, info )
397 DO 110 i = 1, n
398 work( i ) = rwork( i )*work( i )
399 110 CONTINUE
400 ELSE IF( kase.EQ.2 ) THEN
401*
402* Multiply by inv(A)*diag(W).
403*
404 DO 120 i = 1, n
405 work( i ) = rwork( i )*work( i )
406 120 CONTINUE
407 CALL cpptrs( uplo, n, 1, afp, work, n, info )
408 END IF
409 GO TO 100
410 END IF
411*
412* Normalize error.
413*
414 lstres = zero
415 DO 130 i = 1, n
416 lstres = max( lstres, cabs1( x( i, j ) ) )
417 130 CONTINUE
418 IF( lstres.NE.zero )
419 $ ferr( j ) = ferr( j ) / lstres
420*
421 140 CONTINUE
422*
423 RETURN
424*
425* End of CPPRFS
426*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine caxpy(n, ca, cx, incx, cy, incy)
CAXPY
Definition caxpy.f:88
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine chpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
CHPMV
Definition chpmv.f:149
subroutine clacn2(n, v, x, est, kase, isave)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition clacn2.f:131
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine cpptrs(uplo, n, nrhs, ap, b, ldb, info)
CPPTRS
Definition cpptrs.f:106
Here is the call graph for this function:
Here is the caller graph for this function: