LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cdrvpp()

subroutine cdrvpp ( logical, dimension( * )  dotype,
integer  nn,
integer, dimension( * )  nval,
integer  nrhs,
real  thresh,
logical  tsterr,
integer  nmax,
complex, dimension( * )  a,
complex, dimension( * )  afac,
complex, dimension( * )  asav,
complex, dimension( * )  b,
complex, dimension( * )  bsav,
complex, dimension( * )  x,
complex, dimension( * )  xact,
real, dimension( * )  s,
complex, dimension( * )  work,
real, dimension( * )  rwork,
integer  nout 
)

CDRVPP

Purpose:
 CDRVPP tests the driver routines CPPSV and -SVX.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is REAL
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX array, dimension (NMAX*(NMAX+1)/2)
[out]AFAC
          AFAC is COMPLEX array, dimension (NMAX*(NMAX+1)/2)
[out]ASAV
          ASAV is COMPLEX array, dimension (NMAX*(NMAX+1)/2)
[out]B
          B is COMPLEX array, dimension (NMAX*NRHS)
[out]BSAV
          BSAV is COMPLEX array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX array, dimension (NMAX*NRHS)
[out]S
          S is REAL array, dimension (NMAX)
[out]WORK
          WORK is COMPLEX array, dimension
                      (NMAX*max(3,NRHS))
[out]RWORK
          RWORK is REAL array, dimension (NMAX+2*NRHS)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 156 of file cdrvpp.f.

159*
160* -- LAPACK test routine --
161* -- LAPACK is a software package provided by Univ. of Tennessee, --
162* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
163*
164* .. Scalar Arguments ..
165 LOGICAL TSTERR
166 INTEGER NMAX, NN, NOUT, NRHS
167 REAL THRESH
168* ..
169* .. Array Arguments ..
170 LOGICAL DOTYPE( * )
171 INTEGER NVAL( * )
172 REAL RWORK( * ), S( * )
173 COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
174 $ BSAV( * ), WORK( * ), X( * ), XACT( * )
175* ..
176*
177* =====================================================================
178*
179* .. Parameters ..
180 REAL ONE, ZERO
181 parameter( one = 1.0e+0, zero = 0.0e+0 )
182 INTEGER NTYPES
183 parameter( ntypes = 9 )
184 INTEGER NTESTS
185 parameter( ntests = 6 )
186* ..
187* .. Local Scalars ..
188 LOGICAL EQUIL, NOFACT, PREFAC, ZEROT
189 CHARACTER DIST, EQUED, FACT, PACKIT, TYPE, UPLO, XTYPE
190 CHARACTER*3 PATH
191 INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
192 $ IZERO, K, K1, KL, KU, LDA, MODE, N, NERRS,
193 $ NFACT, NFAIL, NIMAT, NPP, NRUN, NT
194 REAL AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
195 $ ROLDC, SCOND
196* ..
197* .. Local Arrays ..
198 CHARACTER EQUEDS( 2 ), FACTS( 3 ), PACKS( 2 ), UPLOS( 2 )
199 INTEGER ISEED( 4 ), ISEEDY( 4 )
200 REAL RESULT( NTESTS )
201* ..
202* .. External Functions ..
203 LOGICAL LSAME
204 REAL CLANHP, SGET06
205 EXTERNAL lsame, clanhp, sget06
206* ..
207* .. External Subroutines ..
208 EXTERNAL aladhd, alaerh, alasvm, ccopy, cerrvx, cget04,
212* ..
213* .. Scalars in Common ..
214 LOGICAL LERR, OK
215 CHARACTER*32 SRNAMT
216 INTEGER INFOT, NUNIT
217* ..
218* .. Common blocks ..
219 COMMON / infoc / infot, nunit, ok, lerr
220 COMMON / srnamc / srnamt
221* ..
222* .. Intrinsic Functions ..
223 INTRINSIC cmplx, max
224* ..
225* .. Data statements ..
226 DATA iseedy / 1988, 1989, 1990, 1991 /
227 DATA uplos / 'U', 'L' / , facts / 'F', 'N', 'E' / ,
228 $ packs / 'C', 'R' / , equeds / 'N', 'Y' /
229* ..
230* .. Executable Statements ..
231*
232* Initialize constants and the random number seed.
233*
234 path( 1: 1 ) = 'Complex precision'
235 path( 2: 3 ) = 'PP'
236 nrun = 0
237 nfail = 0
238 nerrs = 0
239 DO 10 i = 1, 4
240 iseed( i ) = iseedy( i )
241 10 CONTINUE
242*
243* Test the error exits
244*
245 IF( tsterr )
246 $ CALL cerrvx( path, nout )
247 infot = 0
248*
249* Do for each value of N in NVAL
250*
251 DO 140 in = 1, nn
252 n = nval( in )
253 lda = max( n, 1 )
254 npp = n*( n+1 ) / 2
255 xtype = 'N'
256 nimat = ntypes
257 IF( n.LE.0 )
258 $ nimat = 1
259*
260 DO 130 imat = 1, nimat
261*
262* Do the tests only if DOTYPE( IMAT ) is true.
263*
264 IF( .NOT.dotype( imat ) )
265 $ GO TO 130
266*
267* Skip types 3, 4, or 5 if the matrix size is too small.
268*
269 zerot = imat.GE.3 .AND. imat.LE.5
270 IF( zerot .AND. n.LT.imat-2 )
271 $ GO TO 130
272*
273* Do first for UPLO = 'U', then for UPLO = 'L'
274*
275 DO 120 iuplo = 1, 2
276 uplo = uplos( iuplo )
277 packit = packs( iuplo )
278*
279* Set up parameters with CLATB4 and generate a test matrix
280* with CLATMS.
281*
282 CALL clatb4( path, imat, n, n, TYPE, KL, KU, ANORM, MODE,
283 $ CNDNUM, DIST )
284 rcondc = one / cndnum
285*
286 srnamt = 'CLATMS'
287 CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
288 $ CNDNUM, ANORM, KL, KU, PACKIT, A, LDA, WORK,
289 $ INFO )
290*
291* Check error code from CLATMS.
292*
293 IF( info.NE.0 ) THEN
294 CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
295 $ -1, -1, imat, nfail, nerrs, nout )
296 GO TO 120
297 END IF
298*
299* For types 3-5, zero one row and column of the matrix to
300* test that INFO is returned correctly.
301*
302 IF( zerot ) THEN
303 IF( imat.EQ.3 ) THEN
304 izero = 1
305 ELSE IF( imat.EQ.4 ) THEN
306 izero = n
307 ELSE
308 izero = n / 2 + 1
309 END IF
310*
311* Set row and column IZERO of A to 0.
312*
313 IF( iuplo.EQ.1 ) THEN
314 ioff = ( izero-1 )*izero / 2
315 DO 20 i = 1, izero - 1
316 a( ioff+i ) = zero
317 20 CONTINUE
318 ioff = ioff + izero
319 DO 30 i = izero, n
320 a( ioff ) = zero
321 ioff = ioff + i
322 30 CONTINUE
323 ELSE
324 ioff = izero
325 DO 40 i = 1, izero - 1
326 a( ioff ) = zero
327 ioff = ioff + n - i
328 40 CONTINUE
329 ioff = ioff - izero
330 DO 50 i = izero, n
331 a( ioff+i ) = zero
332 50 CONTINUE
333 END IF
334 ELSE
335 izero = 0
336 END IF
337*
338* Set the imaginary part of the diagonals.
339*
340 IF( iuplo.EQ.1 ) THEN
341 CALL claipd( n, a, 2, 1 )
342 ELSE
343 CALL claipd( n, a, n, -1 )
344 END IF
345*
346* Save a copy of the matrix A in ASAV.
347*
348 CALL ccopy( npp, a, 1, asav, 1 )
349*
350 DO 110 iequed = 1, 2
351 equed = equeds( iequed )
352 IF( iequed.EQ.1 ) THEN
353 nfact = 3
354 ELSE
355 nfact = 1
356 END IF
357*
358 DO 100 ifact = 1, nfact
359 fact = facts( ifact )
360 prefac = lsame( fact, 'F' )
361 nofact = lsame( fact, 'N' )
362 equil = lsame( fact, 'E' )
363*
364 IF( zerot ) THEN
365 IF( prefac )
366 $ GO TO 100
367 rcondc = zero
368*
369 ELSE IF( .NOT.lsame( fact, 'N' ) ) THEN
370*
371* Compute the condition number for comparison with
372* the value returned by CPPSVX (FACT = 'N' reuses
373* the condition number from the previous iteration
374* with FACT = 'F').
375*
376 CALL ccopy( npp, asav, 1, afac, 1 )
377 IF( equil .OR. iequed.GT.1 ) THEN
378*
379* Compute row and column scale factors to
380* equilibrate the matrix A.
381*
382 CALL cppequ( uplo, n, afac, s, scond, amax,
383 $ info )
384 IF( info.EQ.0 .AND. n.GT.0 ) THEN
385 IF( iequed.GT.1 )
386 $ scond = zero
387*
388* Equilibrate the matrix.
389*
390 CALL claqhp( uplo, n, afac, s, scond,
391 $ amax, equed )
392 END IF
393 END IF
394*
395* Save the condition number of the
396* non-equilibrated system for use in CGET04.
397*
398 IF( equil )
399 $ roldc = rcondc
400*
401* Compute the 1-norm of A.
402*
403 anorm = clanhp( '1', uplo, n, afac, rwork )
404*
405* Factor the matrix A.
406*
407 CALL cpptrf( uplo, n, afac, info )
408*
409* Form the inverse of A.
410*
411 CALL ccopy( npp, afac, 1, a, 1 )
412 CALL cpptri( uplo, n, a, info )
413*
414* Compute the 1-norm condition number of A.
415*
416 ainvnm = clanhp( '1', uplo, n, a, rwork )
417 IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
418 rcondc = one
419 ELSE
420 rcondc = ( one / anorm ) / ainvnm
421 END IF
422 END IF
423*
424* Restore the matrix A.
425*
426 CALL ccopy( npp, asav, 1, a, 1 )
427*
428* Form an exact solution and set the right hand side.
429*
430 srnamt = 'CLARHS'
431 CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
432 $ nrhs, a, lda, xact, lda, b, lda,
433 $ iseed, info )
434 xtype = 'C'
435 CALL clacpy( 'Full', n, nrhs, b, lda, bsav, lda )
436*
437 IF( nofact ) THEN
438*
439* --- Test CPPSV ---
440*
441* Compute the L*L' or U'*U factorization of the
442* matrix and solve the system.
443*
444 CALL ccopy( npp, a, 1, afac, 1 )
445 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
446*
447 srnamt = 'CPPSV '
448 CALL cppsv( uplo, n, nrhs, afac, x, lda, info )
449*
450* Check error code from CPPSV .
451*
452 IF( info.NE.izero ) THEN
453 CALL alaerh( path, 'CPPSV ', info, izero,
454 $ uplo, n, n, -1, -1, nrhs, imat,
455 $ nfail, nerrs, nout )
456 GO TO 70
457 ELSE IF( info.NE.0 ) THEN
458 GO TO 70
459 END IF
460*
461* Reconstruct matrix from factors and compute
462* residual.
463*
464 CALL cppt01( uplo, n, a, afac, rwork,
465 $ result( 1 ) )
466*
467* Compute residual of the computed solution.
468*
469 CALL clacpy( 'Full', n, nrhs, b, lda, work,
470 $ lda )
471 CALL cppt02( uplo, n, nrhs, a, x, lda, work,
472 $ lda, rwork, result( 2 ) )
473*
474* Check solution from generated exact solution.
475*
476 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
477 $ result( 3 ) )
478 nt = 3
479*
480* Print information about the tests that did not
481* pass the threshold.
482*
483 DO 60 k = 1, nt
484 IF( result( k ).GE.thresh ) THEN
485 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
486 $ CALL aladhd( nout, path )
487 WRITE( nout, fmt = 9999 )'CPPSV ', uplo,
488 $ n, imat, k, result( k )
489 nfail = nfail + 1
490 END IF
491 60 CONTINUE
492 nrun = nrun + nt
493 70 CONTINUE
494 END IF
495*
496* --- Test CPPSVX ---
497*
498 IF( .NOT.prefac .AND. npp.GT.0 )
499 $ CALL claset( 'Full', npp, 1, cmplx( zero ),
500 $ cmplx( zero ), afac, npp )
501 CALL claset( 'Full', n, nrhs, cmplx( zero ),
502 $ cmplx( zero ), x, lda )
503 IF( iequed.GT.1 .AND. n.GT.0 ) THEN
504*
505* Equilibrate the matrix if FACT='F' and
506* EQUED='Y'.
507*
508 CALL claqhp( uplo, n, a, s, scond, amax, equed )
509 END IF
510*
511* Solve the system and compute the condition number
512* and error bounds using CPPSVX.
513*
514 srnamt = 'CPPSVX'
515 CALL cppsvx( fact, uplo, n, nrhs, a, afac, equed,
516 $ s, b, lda, x, lda, rcond, rwork,
517 $ rwork( nrhs+1 ), work,
518 $ rwork( 2*nrhs+1 ), info )
519*
520* Check the error code from CPPSVX.
521*
522 IF( info.NE.izero ) THEN
523 CALL alaerh( path, 'CPPSVX', info, izero,
524 $ fact // uplo, n, n, -1, -1, nrhs,
525 $ imat, nfail, nerrs, nout )
526 GO TO 90
527 END IF
528*
529 IF( info.EQ.0 ) THEN
530 IF( .NOT.prefac ) THEN
531*
532* Reconstruct matrix from factors and compute
533* residual.
534*
535 CALL cppt01( uplo, n, a, afac,
536 $ rwork( 2*nrhs+1 ), result( 1 ) )
537 k1 = 1
538 ELSE
539 k1 = 2
540 END IF
541*
542* Compute residual of the computed solution.
543*
544 CALL clacpy( 'Full', n, nrhs, bsav, lda, work,
545 $ lda )
546 CALL cppt02( uplo, n, nrhs, asav, x, lda, work,
547 $ lda, rwork( 2*nrhs+1 ),
548 $ result( 2 ) )
549*
550* Check solution from generated exact solution.
551*
552 IF( nofact .OR. ( prefac .AND. lsame( equed,
553 $ 'N' ) ) ) THEN
554 CALL cget04( n, nrhs, x, lda, xact, lda,
555 $ rcondc, result( 3 ) )
556 ELSE
557 CALL cget04( n, nrhs, x, lda, xact, lda,
558 $ roldc, result( 3 ) )
559 END IF
560*
561* Check the error bounds from iterative
562* refinement.
563*
564 CALL cppt05( uplo, n, nrhs, asav, b, lda, x,
565 $ lda, xact, lda, rwork,
566 $ rwork( nrhs+1 ), result( 4 ) )
567 ELSE
568 k1 = 6
569 END IF
570*
571* Compare RCOND from CPPSVX with the computed value
572* in RCONDC.
573*
574 result( 6 ) = sget06( rcond, rcondc )
575*
576* Print information about the tests that did not pass
577* the threshold.
578*
579 DO 80 k = k1, 6
580 IF( result( k ).GE.thresh ) THEN
581 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
582 $ CALL aladhd( nout, path )
583 IF( prefac ) THEN
584 WRITE( nout, fmt = 9997 )'CPPSVX', fact,
585 $ uplo, n, equed, imat, k, result( k )
586 ELSE
587 WRITE( nout, fmt = 9998 )'CPPSVX', fact,
588 $ uplo, n, imat, k, result( k )
589 END IF
590 nfail = nfail + 1
591 END IF
592 80 CONTINUE
593 nrun = nrun + 7 - k1
594 90 CONTINUE
595 100 CONTINUE
596 110 CONTINUE
597 120 CONTINUE
598 130 CONTINUE
599 140 CONTINUE
600*
601* Print a summary of the results.
602*
603 CALL alasvm( path, nout, nfail, nrun, nerrs )
604*
605 9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i1,
606 $ ', test(', i1, ')=', g12.5 )
607 9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
608 $ ', type ', i1, ', test(', i1, ')=', g12.5 )
609 9997 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
610 $ ', EQUED=''', a1, ''', type ', i1, ', test(', i1, ')=',
611 $ g12.5 )
612 RETURN
613*
614* End of CDRVPP
615*
subroutine alasvm(type, nout, nfail, nrun, nerrs)
ALASVM
Definition alasvm.f:73
subroutine clarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
CLARHS
Definition clarhs.f:208
subroutine aladhd(iounit, path)
ALADHD
Definition aladhd.f:90
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine cerrvx(path, nunit)
CERRVX
Definition cerrvx.f:55
subroutine cget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
CGET04
Definition cget04.f:102
subroutine claipd(n, a, inda, vinda)
CLAIPD
Definition claipd.f:83
subroutine clatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
CLATB4
Definition clatb4.f:121
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine cppt01(uplo, n, a, afac, rwork, resid)
CPPT01
Definition cppt01.f:95
subroutine cppt02(uplo, n, nrhs, a, x, ldx, b, ldb, rwork, resid)
CPPT02
Definition cppt02.f:123
subroutine cppt05(uplo, n, nrhs, ap, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
CPPT05
Definition cppt05.f:157
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function clanhp(norm, uplo, n, ap, work)
CLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clanhp.f:117
subroutine claqhp(uplo, n, ap, s, scond, amax, equed)
CLAQHP scales a Hermitian matrix stored in packed form.
Definition claqhp.f:126
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine cppequ(uplo, n, ap, s, scond, amax, info)
CPPEQU
Definition cppequ.f:117
subroutine cppsv(uplo, n, nrhs, ap, b, ldb, info)
CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Definition cppsv.f:144
subroutine cppsvx(fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
CPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices
Definition cppsvx.f:311
subroutine cpptrf(uplo, n, ap, info)
CPPTRF
Definition cpptrf.f:119
subroutine cpptri(uplo, n, ap, info)
CPPTRI
Definition cpptri.f:93
real function sget06(rcond, rcondc)
SGET06
Definition sget06.f:55
Here is the call graph for this function:
Here is the caller graph for this function: