LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dchksy_rk()

subroutine dchksy_rk ( logical, dimension( * )  dotype,
integer  nn,
integer, dimension( * )  nval,
integer  nnb,
integer, dimension( * )  nbval,
integer  nns,
integer, dimension( * )  nsval,
double precision  thresh,
logical  tsterr,
integer  nmax,
double precision, dimension( * )  a,
double precision, dimension( * )  afac,
double precision, dimension( * )  e,
double precision, dimension( * )  ainv,
double precision, dimension( * )  b,
double precision, dimension( * )  x,
double precision, dimension( * )  xact,
double precision, dimension( * )  work,
double precision, dimension( * )  rwork,
integer, dimension( * )  iwork,
integer  nout 
)

DCHKSY_RK

Purpose:
 DCHKSY_RK tests DSYTRF_RK, -TRI_3, -TRS_3, and -CON_3.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]E
          E is DOUBLE PRECISION array, dimension (NMAX)
[out]AINV
          AINV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]B
          B is DOUBLE PRECISION array, dimension (NMAX*NSMAX),
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is DOUBLE PRECISION array, dimension (NMAX*NSMAX),
          where NSMAX is the largest entry in NSVAL.
[out]XACT
          XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX),
          where NSMAX is the largest entry in NSVAL.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
[out]IWORK
          IWORK is INTEGER array, dimension (2*NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 173 of file dchksy_rk.f.

176*
177* -- LAPACK test routine --
178* -- LAPACK is a software package provided by Univ. of Tennessee, --
179* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
180*
181* .. Scalar Arguments ..
182 LOGICAL TSTERR
183 INTEGER NMAX, NN, NNB, NNS, NOUT
184 DOUBLE PRECISION THRESH
185* ..
186* .. Array Arguments ..
187 LOGICAL DOTYPE( * )
188 INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
189 DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ), E( * ),
190 $ RWORK( * ), WORK( * ), X( * ), XACT( * )
191* ..
192*
193* =====================================================================
194*
195* .. Parameters ..
196 DOUBLE PRECISION ZERO, ONE
197 parameter( zero = 0.0d+0, one = 1.0d+0 )
198 DOUBLE PRECISION EIGHT, SEVTEN
199 parameter( eight = 8.0d+0, sevten = 17.0d+0 )
200 INTEGER NTYPES
201 parameter( ntypes = 10 )
202 INTEGER NTESTS
203 parameter( ntests = 7 )
204* ..
205* .. Local Scalars ..
206 LOGICAL TRFCON, ZEROT
207 CHARACTER DIST, TYPE, UPLO, XTYPE
208 CHARACTER*3 PATH, MATPATH
209 INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
210 $ ITEMP, IUPLO, IZERO, J, K, KL, KU, LDA, LWORK,
211 $ MODE, N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN,
212 $ NT
213 DOUBLE PRECISION ALPHA, ANORM, CNDNUM, CONST, DTEMP, SING_MAX,
214 $ SING_MIN, RCOND, RCONDC
215* ..
216* .. Local Arrays ..
217 CHARACTER UPLOS( 2 )
218 INTEGER IDUMMY( 1 ), ISEED( 4 ), ISEEDY( 4 )
219 DOUBLE PRECISION BLOCK( 2, 2 ), DDUMMY( 1 ), RESULT( NTESTS )
220* ..
221* .. External Functions ..
222 DOUBLE PRECISION DGET06, DLANGE, DLANSY
223 EXTERNAL dget06, dlange, dlansy
224* ..
225* .. External Subroutines ..
226 EXTERNAL alaerh, alahd, alasum, derrsy, dgesvd, dget04,
230* ..
231* .. Intrinsic Functions ..
232 INTRINSIC max, min, sqrt
233* ..
234* .. Scalars in Common ..
235 LOGICAL LERR, OK
236 CHARACTER*32 SRNAMT
237 INTEGER INFOT, NUNIT
238* ..
239* .. Common blocks ..
240 COMMON / infoc / infot, nunit, ok, lerr
241 COMMON / srnamc / srnamt
242* ..
243* .. Data statements ..
244 DATA iseedy / 1988, 1989, 1990, 1991 /
245 DATA uplos / 'U', 'L' /
246* ..
247* .. Executable Statements ..
248*
249* Initialize constants and the random number seed.
250*
251 alpha = ( one+sqrt( sevten ) ) / eight
252*
253* Test path
254*
255 path( 1: 1 ) = 'Double precision'
256 path( 2: 3 ) = 'SK'
257*
258* Path to generate matrices
259*
260 matpath( 1: 1 ) = 'Double precision'
261 matpath( 2: 3 ) = 'SY'
262*
263 nrun = 0
264 nfail = 0
265 nerrs = 0
266 DO 10 i = 1, 4
267 iseed( i ) = iseedy( i )
268 10 CONTINUE
269*
270* Test the error exits
271*
272 IF( tsterr )
273 $ CALL derrsy( path, nout )
274 infot = 0
275*
276* Set the minimum block size for which the block routine should
277* be used, which will be later returned by ILAENV
278*
279 CALL xlaenv( 2, 2 )
280*
281* Do for each value of N in NVAL
282*
283 DO 270 in = 1, nn
284 n = nval( in )
285 lda = max( n, 1 )
286 xtype = 'N'
287 nimat = ntypes
288 IF( n.LE.0 )
289 $ nimat = 1
290*
291 izero = 0
292*
293* Do for each value of matrix type IMAT
294*
295 DO 260 imat = 1, nimat
296*
297* Do the tests only if DOTYPE( IMAT ) is true.
298*
299 IF( .NOT.dotype( imat ) )
300 $ GO TO 260
301*
302* Skip types 3, 4, 5, or 6 if the matrix size is too small.
303*
304 zerot = imat.GE.3 .AND. imat.LE.6
305 IF( zerot .AND. n.LT.imat-2 )
306 $ GO TO 260
307*
308* Do first for UPLO = 'U', then for UPLO = 'L'
309*
310 DO 250 iuplo = 1, 2
311 uplo = uplos( iuplo )
312*
313* Begin generate the test matrix A.
314*
315* Set up parameters with DLATB4 for the matrix generator
316* based on the type of matrix to be generated.
317*
318 CALL dlatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
319 $ MODE, CNDNUM, DIST )
320*
321* Generate a matrix with DLATMS.
322*
323 srnamt = 'DLATMS'
324 CALL dlatms( n, n, dist, iseed, TYPE, RWORK, MODE,
325 $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
326 $ INFO )
327*
328* Check error code from DLATMS and handle error.
329*
330 IF( info.NE.0 ) THEN
331 CALL alaerh( path, 'DLATMS', info, 0, uplo, n, n, -1,
332 $ -1, -1, imat, nfail, nerrs, nout )
333*
334* Skip all tests for this generated matrix
335*
336 GO TO 250
337 END IF
338*
339* For matrix types 3-6, zero one or more rows and
340* columns of the matrix to test that INFO is returned
341* correctly.
342*
343 IF( zerot ) THEN
344 IF( imat.EQ.3 ) THEN
345 izero = 1
346 ELSE IF( imat.EQ.4 ) THEN
347 izero = n
348 ELSE
349 izero = n / 2 + 1
350 END IF
351*
352 IF( imat.LT.6 ) THEN
353*
354* Set row and column IZERO to zero.
355*
356 IF( iuplo.EQ.1 ) THEN
357 ioff = ( izero-1 )*lda
358 DO 20 i = 1, izero - 1
359 a( ioff+i ) = zero
360 20 CONTINUE
361 ioff = ioff + izero
362 DO 30 i = izero, n
363 a( ioff ) = zero
364 ioff = ioff + lda
365 30 CONTINUE
366 ELSE
367 ioff = izero
368 DO 40 i = 1, izero - 1
369 a( ioff ) = zero
370 ioff = ioff + lda
371 40 CONTINUE
372 ioff = ioff - izero
373 DO 50 i = izero, n
374 a( ioff+i ) = zero
375 50 CONTINUE
376 END IF
377 ELSE
378 IF( iuplo.EQ.1 ) THEN
379*
380* Set the first IZERO rows and columns to zero.
381*
382 ioff = 0
383 DO 70 j = 1, n
384 i2 = min( j, izero )
385 DO 60 i = 1, i2
386 a( ioff+i ) = zero
387 60 CONTINUE
388 ioff = ioff + lda
389 70 CONTINUE
390 ELSE
391*
392* Set the last IZERO rows and columns to zero.
393*
394 ioff = 0
395 DO 90 j = 1, n
396 i1 = max( j, izero )
397 DO 80 i = i1, n
398 a( ioff+i ) = zero
399 80 CONTINUE
400 ioff = ioff + lda
401 90 CONTINUE
402 END IF
403 END IF
404 ELSE
405 izero = 0
406 END IF
407*
408* End generate the test matrix A.
409*
410*
411* Do for each value of NB in NBVAL
412*
413 DO 240 inb = 1, nnb
414*
415* Set the optimal blocksize, which will be later
416* returned by ILAENV.
417*
418 nb = nbval( inb )
419 CALL xlaenv( 1, nb )
420*
421* Copy the test matrix A into matrix AFAC which
422* will be factorized in place. This is needed to
423* preserve the test matrix A for subsequent tests.
424*
425 CALL dlacpy( uplo, n, n, a, lda, afac, lda )
426*
427* Compute the L*D*L**T or U*D*U**T factorization of the
428* matrix. IWORK stores details of the interchanges and
429* the block structure of D. AINV is a work array for
430* block factorization, LWORK is the length of AINV.
431*
432 lwork = max( 2, nb )*lda
433 srnamt = 'DSYTRF_RK'
434 CALL dsytrf_rk( uplo, n, afac, lda, e, iwork, ainv,
435 $ lwork, info )
436*
437* Adjust the expected value of INFO to account for
438* pivoting.
439*
440 k = izero
441 IF( k.GT.0 ) THEN
442 100 CONTINUE
443 IF( iwork( k ).LT.0 ) THEN
444 IF( iwork( k ).NE.-k ) THEN
445 k = -iwork( k )
446 GO TO 100
447 END IF
448 ELSE IF( iwork( k ).NE.k ) THEN
449 k = iwork( k )
450 GO TO 100
451 END IF
452 END IF
453*
454* Check error code from DSYTRF_RK and handle error.
455*
456 IF( info.NE.k)
457 $ CALL alaerh( path, 'DSYTRF_RK', info, k,
458 $ uplo, n, n, -1, -1, nb, imat,
459 $ nfail, nerrs, nout )
460*
461* Set the condition estimate flag if the INFO is not 0.
462*
463 IF( info.NE.0 ) THEN
464 trfcon = .true.
465 ELSE
466 trfcon = .false.
467 END IF
468*
469*+ TEST 1
470* Reconstruct matrix from factors and compute residual.
471*
472 CALL dsyt01_3( uplo, n, a, lda, afac, lda, e, iwork,
473 $ ainv, lda, rwork, result( 1 ) )
474 nt = 1
475*
476*+ TEST 2
477* Form the inverse and compute the residual,
478* if the factorization was competed without INFO > 0
479* (i.e. there is no zero rows and columns).
480* Do it only for the first block size.
481*
482 IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
483 CALL dlacpy( uplo, n, n, afac, lda, ainv, lda )
484 srnamt = 'DSYTRI_3'
485*
486* Another reason that we need to compute the inverse
487* is that DPOT03 produces RCONDC which is used later
488* in TEST6 and TEST7.
489*
490 lwork = (n+nb+1)*(nb+3)
491 CALL dsytri_3( uplo, n, ainv, lda, e, iwork, work,
492 $ lwork, info )
493*
494* Check error code from DSYTRI_3 and handle error.
495*
496 IF( info.NE.0 )
497 $ CALL alaerh( path, 'DSYTRI_3', info, -1,
498 $ uplo, n, n, -1, -1, -1, imat,
499 $ nfail, nerrs, nout )
500*
501* Compute the residual for a symmetric matrix times
502* its inverse.
503*
504 CALL dpot03( uplo, n, a, lda, ainv, lda, work, lda,
505 $ rwork, rcondc, result( 2 ) )
506 nt = 2
507 END IF
508*
509* Print information about the tests that did not pass
510* the threshold.
511*
512 DO 110 k = 1, nt
513 IF( result( k ).GE.thresh ) THEN
514 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
515 $ CALL alahd( nout, path )
516 WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
517 $ result( k )
518 nfail = nfail + 1
519 END IF
520 110 CONTINUE
521 nrun = nrun + nt
522*
523*+ TEST 3
524* Compute largest element in U or L
525*
526 result( 3 ) = zero
527 dtemp = zero
528*
529 const = one / ( one-alpha )
530*
531 IF( iuplo.EQ.1 ) THEN
532*
533* Compute largest element in U
534*
535 k = n
536 120 CONTINUE
537 IF( k.LE.1 )
538 $ GO TO 130
539*
540 IF( iwork( k ).GT.zero ) THEN
541*
542* Get max absolute value from elements
543* in column k in in U
544*
545 dtemp = dlange( 'M', k-1, 1,
546 $ afac( ( k-1 )*lda+1 ), lda, rwork )
547 ELSE
548*
549* Get max absolute value from elements
550* in columns k and k-1 in U
551*
552 dtemp = dlange( 'M', k-2, 2,
553 $ afac( ( k-2 )*lda+1 ), lda, rwork )
554 k = k - 1
555*
556 END IF
557*
558* DTEMP should be bounded by CONST
559*
560 dtemp = dtemp - const + thresh
561 IF( dtemp.GT.result( 3 ) )
562 $ result( 3 ) = dtemp
563*
564 k = k - 1
565*
566 GO TO 120
567 130 CONTINUE
568*
569 ELSE
570*
571* Compute largest element in L
572*
573 k = 1
574 140 CONTINUE
575 IF( k.GE.n )
576 $ GO TO 150
577*
578 IF( iwork( k ).GT.zero ) THEN
579*
580* Get max absolute value from elements
581* in column k in in L
582*
583 dtemp = dlange( 'M', n-k, 1,
584 $ afac( ( k-1 )*lda+k+1 ), lda, rwork )
585 ELSE
586*
587* Get max absolute value from elements
588* in columns k and k+1 in L
589*
590 dtemp = dlange( 'M', n-k-1, 2,
591 $ afac( ( k-1 )*lda+k+2 ), lda, rwork )
592 k = k + 1
593*
594 END IF
595*
596* DTEMP should be bounded by CONST
597*
598 dtemp = dtemp - const + thresh
599 IF( dtemp.GT.result( 3 ) )
600 $ result( 3 ) = dtemp
601*
602 k = k + 1
603*
604 GO TO 140
605 150 CONTINUE
606 END IF
607*
608*+ TEST 4
609* Compute largest 2-Norm (condition number)
610* of 2-by-2 diag blocks
611*
612 result( 4 ) = zero
613 dtemp = zero
614*
615 const = ( one+alpha ) / ( one-alpha )
616 CALL dlacpy( uplo, n, n, afac, lda, ainv, lda )
617*
618 IF( iuplo.EQ.1 ) THEN
619*
620* Loop backward for UPLO = 'U'
621*
622 k = n
623 160 CONTINUE
624 IF( k.LE.1 )
625 $ GO TO 170
626*
627 IF( iwork( k ).LT.zero ) THEN
628*
629* Get the two singular values
630* (real and non-negative) of a 2-by-2 block,
631* store them in RWORK array
632*
633 block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
634 block( 1, 2 ) = e( k )
635 block( 2, 1 ) = block( 1, 2 )
636 block( 2, 2 ) = afac( (k-1)*lda+k )
637*
638 CALL dgesvd( 'N', 'N', 2, 2, block, 2, rwork,
639 $ ddummy, 1, ddummy, 1,
640 $ work, 10, info )
641*
642 sing_max = rwork( 1 )
643 sing_min = rwork( 2 )
644*
645 dtemp = sing_max / sing_min
646*
647* DTEMP should be bounded by CONST
648*
649 dtemp = dtemp - const + thresh
650 IF( dtemp.GT.result( 4 ) )
651 $ result( 4 ) = dtemp
652 k = k - 1
653*
654 END IF
655*
656 k = k - 1
657*
658 GO TO 160
659 170 CONTINUE
660*
661 ELSE
662*
663* Loop forward for UPLO = 'L'
664*
665 k = 1
666 180 CONTINUE
667 IF( k.GE.n )
668 $ GO TO 190
669*
670 IF( iwork( k ).LT.zero ) THEN
671*
672* Get the two singular values
673* (real and non-negative) of a 2-by-2 block,
674* store them in RWORK array
675*
676 block( 1, 1 ) = afac( ( k-1 )*lda+k )
677 block( 2, 1 ) = e( k )
678 block( 1, 2 ) = block( 2, 1 )
679 block( 2, 2 ) = afac( k*lda+k+1 )
680*
681 CALL dgesvd( 'N', 'N', 2, 2, block, 2, rwork,
682 $ ddummy, 1, ddummy, 1,
683 $ work, 10, info )
684*
685*
686 sing_max = rwork( 1 )
687 sing_min = rwork( 2 )
688*
689 dtemp = sing_max / sing_min
690*
691* DTEMP should be bounded by CONST
692*
693 dtemp = dtemp - const + thresh
694 IF( dtemp.GT.result( 4 ) )
695 $ result( 4 ) = dtemp
696 k = k + 1
697*
698 END IF
699*
700 k = k + 1
701*
702 GO TO 180
703 190 CONTINUE
704 END IF
705*
706* Print information about the tests that did not pass
707* the threshold.
708*
709 DO 200 k = 3, 4
710 IF( result( k ).GE.thresh ) THEN
711 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
712 $ CALL alahd( nout, path )
713 WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
714 $ result( k )
715 nfail = nfail + 1
716 END IF
717 200 CONTINUE
718 nrun = nrun + 2
719*
720* Skip the other tests if this is not the first block
721* size.
722*
723 IF( inb.GT.1 )
724 $ GO TO 240
725*
726* Do only the condition estimate if INFO is not 0.
727*
728 IF( trfcon ) THEN
729 rcondc = zero
730 GO TO 230
731 END IF
732*
733* Do for each value of NRHS in NSVAL.
734*
735 DO 220 irhs = 1, nns
736 nrhs = nsval( irhs )
737*
738*+ TEST 5 ( Using TRS_3)
739* Solve and compute residual for A * X = B.
740*
741* Choose a set of NRHS random solution vectors
742* stored in XACT and set up the right hand side B
743*
744 srnamt = 'DLARHS'
745 CALL dlarhs( matpath, xtype, uplo, ' ', n, n,
746 $ kl, ku, nrhs, a, lda, xact, lda,
747 $ b, lda, iseed, info )
748 CALL dlacpy( 'Full', n, nrhs, b, lda, x, lda )
749*
750 srnamt = 'DSYTRS_3'
751 CALL dsytrs_3( uplo, n, nrhs, afac, lda, e, iwork,
752 $ x, lda, info )
753*
754* Check error code from DSYTRS_3 and handle error.
755*
756 IF( info.NE.0 )
757 $ CALL alaerh( path, 'DSYTRS_3', info, 0,
758 $ uplo, n, n, -1, -1, nrhs, imat,
759 $ nfail, nerrs, nout )
760*
761 CALL dlacpy( 'Full', n, nrhs, b, lda, work, lda )
762*
763* Compute the residual for the solution
764*
765 CALL dpot02( uplo, n, nrhs, a, lda, x, lda, work,
766 $ lda, rwork, result( 5 ) )
767*
768*+ TEST 6
769* Check solution from generated exact solution.
770*
771 CALL dget04( n, nrhs, x, lda, xact, lda, rcondc,
772 $ result( 6 ) )
773*
774* Print information about the tests that did not pass
775* the threshold.
776*
777 DO 210 k = 5, 6
778 IF( result( k ).GE.thresh ) THEN
779 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
780 $ CALL alahd( nout, path )
781 WRITE( nout, fmt = 9998 )uplo, n, nrhs,
782 $ imat, k, result( k )
783 nfail = nfail + 1
784 END IF
785 210 CONTINUE
786 nrun = nrun + 2
787*
788* End do for each value of NRHS in NSVAL.
789*
790 220 CONTINUE
791*
792*+ TEST 7
793* Get an estimate of RCOND = 1/CNDNUM.
794*
795 230 CONTINUE
796 anorm = dlansy( '1', uplo, n, a, lda, rwork )
797 srnamt = 'DSYCON_3'
798 CALL dsycon_3( uplo, n, afac, lda, e, iwork, anorm,
799 $ rcond, work, iwork( n+1 ), info )
800*
801* Check error code from DSYCON_3 and handle error.
802*
803 IF( info.NE.0 )
804 $ CALL alaerh( path, 'DSYCON_3', info, 0,
805 $ uplo, n, n, -1, -1, -1, imat,
806 $ nfail, nerrs, nout )
807*
808* Compute the test ratio to compare to values of RCOND
809*
810 result( 7 ) = dget06( rcond, rcondc )
811*
812* Print information about the tests that did not pass
813* the threshold.
814*
815 IF( result( 7 ).GE.thresh ) THEN
816 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
817 $ CALL alahd( nout, path )
818 WRITE( nout, fmt = 9997 ) uplo, n, imat, 7,
819 $ result( 7 )
820 nfail = nfail + 1
821 END IF
822 nrun = nrun + 1
823 240 CONTINUE
824*
825 250 CONTINUE
826 260 CONTINUE
827 270 CONTINUE
828*
829* Print a summary of the results.
830*
831 CALL alasum( path, nout, nfail, nrun, nerrs )
832*
833 9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
834 $ i2, ', test ', i2, ', ratio =', g12.5 )
835 9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
836 $ i2, ', test(', i2, ') =', g12.5 )
837 9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
838 $ ', test(', i2, ') =', g12.5 )
839 RETURN
840*
841* End of DCHKSY_RK
842*
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine dlarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
DLARHS
Definition dlarhs.f:205
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine derrsy(path, nunit)
DERRSY
Definition derrsy.f:55
subroutine dget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
DGET04
Definition dget04.f:102
double precision function dget06(rcond, rcondc)
DGET06
Definition dget06.f:55
subroutine dlatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
DLATB4
Definition dlatb4.f:120
subroutine dlatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
DLATMS
Definition dlatms.f:321
subroutine dpot02(uplo, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
DPOT02
Definition dpot02.f:127
subroutine dpot03(uplo, n, a, lda, ainv, ldainv, work, ldwork, rwork, rcond, resid)
DPOT03
Definition dpot03.f:125
subroutine dsyt01_3(uplo, n, a, lda, afac, ldafac, e, ipiv, c, ldc, rwork, resid)
DSYT01_3
Definition dsyt01_3.f:140
subroutine dgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, info)
DGESVD computes the singular value decomposition (SVD) for GE matrices
Definition dgesvd.f:211
subroutine dsycon_3(uplo, n, a, lda, e, ipiv, anorm, rcond, work, iwork, info)
DSYCON_3
Definition dsycon_3.f:171
subroutine dsytrf_rk(uplo, n, a, lda, e, ipiv, work, lwork, info)
DSYTRF_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Ka...
Definition dsytrf_rk.f:259
subroutine dsytri_3(uplo, n, a, lda, e, ipiv, work, lwork, info)
DSYTRI_3
Definition dsytri_3.f:170
subroutine dsytrs_3(uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
DSYTRS_3
Definition dsytrs_3.f:165
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:114
double precision function dlansy(norm, uplo, n, a, lda, work)
DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlansy.f:122
Here is the call graph for this function:
Here is the caller graph for this function: