LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlange()

double precision function dlange ( character norm,
integer m,
integer n,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) work )

DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.

Download DLANGE + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DLANGE  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the  element of  largest absolute value  of a
!> real matrix A.
!> 
Returns
DLANGE
!>
!>    DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 
Parameters
[in]NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in DLANGE as described
!>          above.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.  When M = 0,
!>          DLANGE is set to zero.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.  When N = 0,
!>          DLANGE is set to zero.
!> 
[in]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          The m by n matrix A.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(M,1).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
!>          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
!>          referenced.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 111 of file dlange.f.

112*
113* -- LAPACK auxiliary routine --
114* -- LAPACK is a software package provided by Univ. of Tennessee, --
115* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117* .. Scalar Arguments ..
118 CHARACTER NORM
119 INTEGER LDA, M, N
120* ..
121* .. Array Arguments ..
122 DOUBLE PRECISION A( LDA, * ), WORK( * )
123* ..
124*
125* =====================================================================
126*
127* .. Parameters ..
128 DOUBLE PRECISION ONE, ZERO
129 parameter( one = 1.0d+0, zero = 0.0d+0 )
130* ..
131* .. Local Scalars ..
132 INTEGER I, J
133 DOUBLE PRECISION SCALE, SUM, VALUE, TEMP
134* ..
135* .. External Subroutines ..
136 EXTERNAL dlassq
137* ..
138* .. External Functions ..
139 LOGICAL LSAME, DISNAN
140 EXTERNAL lsame, disnan
141* ..
142* .. Intrinsic Functions ..
143 INTRINSIC abs, min, sqrt
144* ..
145* .. Executable Statements ..
146*
147 IF( min( m, n ).EQ.0 ) THEN
148 VALUE = zero
149 ELSE IF( lsame( norm, 'M' ) ) THEN
150*
151* Find max(abs(A(i,j))).
152*
153 VALUE = zero
154 DO 20 j = 1, n
155 DO 10 i = 1, m
156 temp = abs( a( i, j ) )
157 IF( VALUE.LT.temp .OR. disnan( temp ) ) VALUE = temp
158 10 CONTINUE
159 20 CONTINUE
160 ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
161*
162* Find norm1(A).
163*
164 VALUE = zero
165 DO 40 j = 1, n
166 sum = zero
167 DO 30 i = 1, m
168 sum = sum + abs( a( i, j ) )
169 30 CONTINUE
170 IF( VALUE.LT.sum .OR. disnan( sum ) ) VALUE = sum
171 40 CONTINUE
172 ELSE IF( lsame( norm, 'I' ) ) THEN
173*
174* Find normI(A).
175*
176 DO 50 i = 1, m
177 work( i ) = zero
178 50 CONTINUE
179 DO 70 j = 1, n
180 DO 60 i = 1, m
181 work( i ) = work( i ) + abs( a( i, j ) )
182 60 CONTINUE
183 70 CONTINUE
184 VALUE = zero
185 DO 80 i = 1, m
186 temp = work( i )
187 IF( VALUE.LT.temp .OR. disnan( temp ) ) VALUE = temp
188 80 CONTINUE
189 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
190 $ ( lsame( norm, 'E' ) ) ) THEN
191*
192* Find normF(A).
193*
194 scale = zero
195 sum = one
196 DO 90 j = 1, n
197 CALL dlassq( m, a( 1, j ), 1, scale, sum )
198 90 CONTINUE
199 VALUE = scale*sqrt( sum )
200 END IF
201*
202 dlange = VALUE
203 RETURN
204*
205* End of DLANGE
206*
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:112
subroutine dlassq(n, x, incx, scale, sumsq)
DLASSQ updates a sum of squares represented in scaled form.
Definition dlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: