LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dsytri_3()

subroutine dsytri_3 ( character  uplo,
integer  n,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( * )  e,
integer, dimension( * )  ipiv,
double precision, dimension( * )  work,
integer  lwork,
integer  info 
)

DSYTRI_3

Download DSYTRI_3 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DSYTRI_3 computes the inverse of a real symmetric indefinite
 matrix A using the factorization computed by DSYTRF_RK or DSYTRF_BK:

     A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),

 where U (or L) is unit upper (or lower) triangular matrix,
 U**T (or L**T) is the transpose of U (or L), P is a permutation
 matrix, P**T is the transpose of P, and D is symmetric and block
 diagonal with 1-by-1 and 2-by-2 diagonal blocks.

 DSYTRI_3 sets the leading dimension of the workspace  before calling
 DSYTRI_3X that actually computes the inverse.  This is the blocked
 version of the algorithm, calling Level 3 BLAS.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the details of the factorization are
          stored as an upper or lower triangular matrix.
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, diagonal of the block diagonal matrix D and
          factors U or L as computed by DSYTRF_RK and DSYTRF_BK:
            a) ONLY diagonal elements of the symmetric block diagonal
               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
               (superdiagonal (or subdiagonal) elements of D
                should be provided on entry in array E), and
            b) If UPLO = 'U': factor U in the superdiagonal part of A.
               If UPLO = 'L': factor L in the subdiagonal part of A.

          On exit, if INFO = 0, the symmetric inverse of the original
          matrix.
             If UPLO = 'U': the upper triangular part of the inverse
             is formed and the part of A below the diagonal is not
             referenced;
             If UPLO = 'L': the lower triangular part of the inverse
             is formed and the part of A above the diagonal is not
             referenced.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]E
          E is DOUBLE PRECISION array, dimension (N)
          On entry, contains the superdiagonal (or subdiagonal)
          elements of the symmetric block diagonal matrix D
          with 1-by-1 or 2-by-2 diagonal blocks, where
          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.

          NOTE: For 1-by-1 diagonal block D(k), where
          1 <= k <= N, the element E(k) is not referenced in both
          UPLO = 'U' or UPLO = 'L' cases.
[in]IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D
          as determined by DSYTRF_RK or DSYTRF_BK.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (N+NB+1)*(NB+3).
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The length of WORK. LWORK >= (N+NB+1)*(NB+3).

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the optimal
          size of the WORK array, returns this value as the first
          entry of the WORK array, and no error message related to
          LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
               inverse could not be computed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
  November 2017,  Igor Kozachenko,
                  Computer Science Division,
                  University of California, Berkeley

Definition at line 168 of file dsytri_3.f.

170*
171* -- LAPACK computational routine --
172* -- LAPACK is a software package provided by Univ. of Tennessee, --
173* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
174*
175* .. Scalar Arguments ..
176 CHARACTER UPLO
177 INTEGER INFO, LDA, LWORK, N
178* ..
179* .. Array Arguments ..
180 INTEGER IPIV( * )
181 DOUBLE PRECISION A( LDA, * ), E( * ), WORK( * )
182* ..
183*
184* =====================================================================
185*
186* .. Local Scalars ..
187 LOGICAL UPPER, LQUERY
188 INTEGER LWKOPT, NB
189* ..
190* .. External Functions ..
191 LOGICAL LSAME
192 INTEGER ILAENV
193 EXTERNAL lsame, ilaenv
194* ..
195* .. External Subroutines ..
196 EXTERNAL dsytri_3x, xerbla
197* ..
198* .. Intrinsic Functions ..
199 INTRINSIC max
200* ..
201* .. Executable Statements ..
202*
203* Test the input parameters.
204*
205 info = 0
206 upper = lsame( uplo, 'U' )
207 lquery = ( lwork.EQ.-1 )
208*
209* Determine the block size
210*
211 nb = max( 1, ilaenv( 1, 'DSYTRI_3', uplo, n, -1, -1, -1 ) )
212 lwkopt = ( n+nb+1 ) * ( nb+3 )
213*
214 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
215 info = -1
216 ELSE IF( n.LT.0 ) THEN
217 info = -2
218 ELSE IF( lda.LT.max( 1, n ) ) THEN
219 info = -4
220 ELSE IF ( lwork .LT. lwkopt .AND. .NOT.lquery ) THEN
221 info = -8
222 END IF
223*
224 IF( info.NE.0 ) THEN
225 CALL xerbla( 'DSYTRI_3', -info )
226 RETURN
227 ELSE IF( lquery ) THEN
228 work( 1 ) = lwkopt
229 RETURN
230 END IF
231*
232* Quick return if possible
233*
234 IF( n.EQ.0 )
235 $ RETURN
236*
237 CALL dsytri_3x( uplo, n, a, lda, e, ipiv, work, nb, info )
238*
239 work( 1 ) = lwkopt
240*
241 RETURN
242*
243* End of DSYTRI_3
244*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dsytri_3x(uplo, n, a, lda, e, ipiv, work, nb, info)
DSYTRI_3X
Definition dsytri_3x.f:159
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: