137 SUBROUTINE cgeqlf( M, N, A, LDA, TAU, WORK, LWORK, INFO )
144 INTEGER INFO, LDA, LWORK, M, N
147 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
154 INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
155 $ MU, NB, NBMIN, NU, NX
172 lquery = ( lwork.EQ.-1 )
175 ELSE IF( n.LT.0 )
THEN
177 ELSE IF( lda.LT.max( 1, m ) )
THEN
186 nb = ilaenv( 1,
'CGEQLF',
' ', m, n, -1, -1 )
191 IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery )
THEN
197 CALL xerbla(
'CGEQLF', -info )
199 ELSE IF( lquery )
THEN
212 IF( nb.GT.1 .AND. nb.LT.k )
THEN
216 nx = max( 0, ilaenv( 3,
'CGEQLF',
' ', m, n, -1, -1 ) )
223 IF( lwork.LT.iws )
THEN
229 nbmin = max( 2, ilaenv( 2,
'CGEQLF',
' ', m, n, -1,
235 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k )
THEN
240 ki = ( ( k-nx-1 ) / nb )*nb
243 DO 10 i = k - kk + ki + 1, k - kk + 1, -nb
244 ib = min( k-i+1, nb )
249 CALL cgeql2( m-k+i+ib-1, ib, a( 1, n-k+i ), lda, tau( i ),
251 IF( n-k+i.GT.1 )
THEN
256 CALL clarft(
'Backward',
'Columnwise', m-k+i+ib-1, ib,
257 $ a( 1, n-k+i ), lda, tau( i ), work, ldwork )
261 CALL clarfb(
'Left',
'Conjugate transpose',
'Backward',
262 $
'Columnwise', m-k+i+ib-1, n-k+i-1, ib,
263 $ a( 1, n-k+i ), lda, work, ldwork, a, lda,
264 $ work( ib+1 ), ldwork )
267 mu = m - k + i + nb - 1
268 nu = n - k + i + nb - 1
276 IF( mu.GT.0 .AND. nu.GT.0 )
277 $
CALL cgeql2( mu, nu, a, lda, tau, work, iinfo )
subroutine xerbla(SRNAME, INFO)
XERBLA
subroutine cgeqlf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
CGEQLF
subroutine cgeql2(M, N, A, LDA, TAU, WORK, INFO)
CGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
subroutine clarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
subroutine clarft(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
CLARFT forms the triangular factor T of a block reflector H = I - vtvH