LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgeql2()

subroutine cgeql2 ( integer m,
integer n,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( * ) tau,
complex, dimension( * ) work,
integer info )

CGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.

Download CGEQL2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CGEQL2 computes a QL factorization of a complex m by n matrix A:
!> A = Q * L.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the m by n matrix A.
!>          On exit, if m >= n, the lower triangle of the subarray
!>          A(m-n+1:m,1:n) contains the n by n lower triangular matrix L;
!>          if m <= n, the elements on and below the (n-m)-th
!>          superdiagonal contain the m by n lower trapezoidal matrix L;
!>          the remaining elements, with the array TAU, represent the
!>          unitary matrix Q as a product of elementary reflectors
!>          (see Further Details).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]TAU
!>          TAU is COMPLEX array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(k) . . . H(2) H(1), where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
!>  A(1:m-k+i-1,n-k+i), and tau in TAU(i).
!> 

Definition at line 120 of file cgeql2.f.

121*
122* -- LAPACK computational routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 INTEGER INFO, LDA, M, N
128* ..
129* .. Array Arguments ..
130 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
131* ..
132*
133* =====================================================================
134*
135* .. Local Scalars ..
136 INTEGER I, K
137* ..
138* .. External Subroutines ..
139 EXTERNAL clarf1l, clarfg, xerbla
140* ..
141* .. Intrinsic Functions ..
142 INTRINSIC conjg, max, min
143* ..
144* .. Executable Statements ..
145*
146* Test the input arguments
147*
148 info = 0
149 IF( m.LT.0 ) THEN
150 info = -1
151 ELSE IF( n.LT.0 ) THEN
152 info = -2
153 ELSE IF( lda.LT.max( 1, m ) ) THEN
154 info = -4
155 END IF
156 IF( info.NE.0 ) THEN
157 CALL xerbla( 'CGEQL2', -info )
158 RETURN
159 END IF
160*
161 k = min( m, n )
162*
163 DO 10 i = k, 1, -1
164*
165* Generate elementary reflector H(i) to annihilate
166* A(1:m-k+i-1,n-k+i)
167*
168 CALL clarfg( m-k+i, a( m-k+i, n-k+i ), a( 1, n-k+i ), 1,
169 $ tau( i ) )
170*
171* Apply H(i)**H to A(1:m-k+i,1:n-k+i-1) from the left
172*
173 CALL clarf1l( 'Left', m-k+i, n-k+i-1, a( 1, n-k+i ), 1,
174 $ conjg( tau( i ) ), a, lda, work )
175 10 CONTINUE
176 RETURN
177*
178* End of CGEQL2
179*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1l(side, m, n, v, incv, tau, c, ldc, work)
CLARF1L applies an elementary reflector to a general rectangular
Definition clarf1l.f:127
subroutine clarfg(n, alpha, x, incx, tau)
CLARFG generates an elementary reflector (Householder matrix).
Definition clarfg.f:104
Here is the call graph for this function:
Here is the caller graph for this function: