LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgelsd()

subroutine dgelsd ( integer  m,
integer  n,
integer  nrhs,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( ldb, * )  b,
integer  ldb,
double precision, dimension( * )  s,
double precision  rcond,
integer  rank,
double precision, dimension( * )  work,
integer  lwork,
integer, dimension( * )  iwork,
integer  info 
)

DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices

Download DGELSD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DGELSD computes the minimum-norm solution to a real linear least
 squares problem:
     minimize 2-norm(| b - A*x |)
 using the singular value decomposition (SVD) of A. A is an M-by-N
 matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can be
 handled in a single call; they are stored as the columns of the
 M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 matrix X.

 The problem is solved in three steps:
 (1) Reduce the coefficient matrix A to bidiagonal form with
     Householder transformations, reducing the original problem
     into a "bidiagonal least squares problem" (BLS)
 (2) Solve the BLS using a divide and conquer approach.
 (3) Apply back all the Householder transformations to solve
     the original least squares problem.

 The effective rank of A is determined by treating as zero those
 singular values which are less than RCOND times the largest singular
 value.
Parameters
[in]M
          M is INTEGER
          The number of rows of A. M >= 0.
[in]N
          N is INTEGER
          The number of columns of A. N >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X. NRHS >= 0.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A has been destroyed.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the M-by-NRHS right hand side matrix B.
          On exit, B is overwritten by the N-by-NRHS solution
          matrix X.  If m >= n and RANK = n, the residual
          sum-of-squares for the solution in the i-th column is given
          by the sum of squares of elements n+1:m in that column.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,max(M,N)).
[out]S
          S is DOUBLE PRECISION array, dimension (min(M,N))
          The singular values of A in decreasing order.
          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
[in]RCOND
          RCOND is DOUBLE PRECISION
          RCOND is used to determine the effective rank of A.
          Singular values S(i) <= RCOND*S(1) are treated as zero.
          If RCOND < 0, machine precision is used instead.
[out]RANK
          RANK is INTEGER
          The effective rank of A, i.e., the number of singular values
          which are greater than RCOND*S(1).
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK must be at least 1.
          The exact minimum amount of workspace needed depends on M,
          N and NRHS. As long as LWORK is at least
              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
          if M is greater than or equal to N or
              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
          if M is less than N, the code will execute correctly.
          SMLSIZ is returned by ILAENV and is equal to the maximum
          size of the subproblems at the bottom of the computation
          tree (usually about 25), and
             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
          For good performance, LWORK should generally be larger.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN),
          where MINMN = MIN( M,N ).
          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  the algorithm for computing the SVD failed to converge;
                if INFO = i, i off-diagonal elements of an intermediate
                bidiagonal form did not converge to zero.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA

Definition at line 201 of file dgelsd.f.

203*
204* -- LAPACK driver routine --
205* -- LAPACK is a software package provided by Univ. of Tennessee, --
206* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
207*
208* .. Scalar Arguments ..
209 INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
210 DOUBLE PRECISION RCOND
211* ..
212* .. Array Arguments ..
213 INTEGER IWORK( * )
214 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
215* ..
216*
217* =====================================================================
218*
219* .. Parameters ..
220 DOUBLE PRECISION ZERO, ONE, TWO
221 parameter( zero = 0.0d0, one = 1.0d0, two = 2.0d0 )
222* ..
223* .. Local Scalars ..
224 LOGICAL LQUERY
225 INTEGER IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
226 $ LDWORK, LIWORK, MAXMN, MAXWRK, MINMN, MINWRK,
227 $ MM, MNTHR, NLVL, NWORK, SMLSIZ, WLALSD
228 DOUBLE PRECISION ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
229* ..
230* .. External Subroutines ..
231 EXTERNAL dgebrd, dgelqf, dgeqrf, dlacpy, dlalsd,
233* ..
234* .. External Functions ..
235 INTEGER ILAENV
236 DOUBLE PRECISION DLAMCH, DLANGE
237 EXTERNAL ilaenv, dlamch, dlange
238* ..
239* .. Intrinsic Functions ..
240 INTRINSIC dble, int, log, max, min
241* ..
242* .. Executable Statements ..
243*
244* Test the input arguments.
245*
246 info = 0
247 minmn = min( m, n )
248 maxmn = max( m, n )
249 mnthr = ilaenv( 6, 'DGELSD', ' ', m, n, nrhs, -1 )
250 lquery = ( lwork.EQ.-1 )
251 IF( m.LT.0 ) THEN
252 info = -1
253 ELSE IF( n.LT.0 ) THEN
254 info = -2
255 ELSE IF( nrhs.LT.0 ) THEN
256 info = -3
257 ELSE IF( lda.LT.max( 1, m ) ) THEN
258 info = -5
259 ELSE IF( ldb.LT.max( 1, maxmn ) ) THEN
260 info = -7
261 END IF
262*
263 smlsiz = ilaenv( 9, 'DGELSD', ' ', 0, 0, 0, 0 )
264*
265* Compute workspace.
266* (Note: Comments in the code beginning "Workspace:" describe the
267* minimal amount of workspace needed at that point in the code,
268* as well as the preferred amount for good performance.
269* NB refers to the optimal block size for the immediately
270* following subroutine, as returned by ILAENV.)
271*
272 minwrk = 1
273 liwork = 1
274 minmn = max( 1, minmn )
275 nlvl = max( int( log( dble( minmn ) / dble( smlsiz+1 ) ) /
276 $ log( two ) ) + 1, 0 )
277*
278 IF( info.EQ.0 ) THEN
279 maxwrk = 0
280 liwork = 3*minmn*nlvl + 11*minmn
281 mm = m
282 IF( m.GE.n .AND. m.GE.mnthr ) THEN
283*
284* Path 1a - overdetermined, with many more rows than columns.
285*
286 mm = n
287 maxwrk = max( maxwrk, n+n*ilaenv( 1, 'DGEQRF', ' ', m, n,
288 $ -1, -1 ) )
289 maxwrk = max( maxwrk, n+nrhs*
290 $ ilaenv( 1, 'DORMQR', 'LT', m, nrhs, n, -1 ) )
291 END IF
292 IF( m.GE.n ) THEN
293*
294* Path 1 - overdetermined or exactly determined.
295*
296 maxwrk = max( maxwrk, 3*n+( mm+n )*
297 $ ilaenv( 1, 'DGEBRD', ' ', mm, n, -1, -1 ) )
298 maxwrk = max( maxwrk, 3*n+nrhs*
299 $ ilaenv( 1, 'DORMBR', 'QLT', mm, nrhs, n, -1 ) )
300 maxwrk = max( maxwrk, 3*n+( n-1 )*
301 $ ilaenv( 1, 'DORMBR', 'PLN', n, nrhs, n, -1 ) )
302 wlalsd = 9*n+2*n*smlsiz+8*n*nlvl+n*nrhs+(smlsiz+1)**2
303 maxwrk = max( maxwrk, 3*n+wlalsd )
304 minwrk = max( 3*n+mm, 3*n+nrhs, 3*n+wlalsd )
305 END IF
306 IF( n.GT.m ) THEN
307 wlalsd = 9*m+2*m*smlsiz+8*m*nlvl+m*nrhs+(smlsiz+1)**2
308 IF( n.GE.mnthr ) THEN
309*
310* Path 2a - underdetermined, with many more columns
311* than rows.
312*
313 maxwrk = m + m*ilaenv( 1, 'DGELQF', ' ', m, n, -1, -1 )
314 maxwrk = max( maxwrk, m*m+4*m+2*m*
315 $ ilaenv( 1, 'DGEBRD', ' ', m, m, -1, -1 ) )
316 maxwrk = max( maxwrk, m*m+4*m+nrhs*
317 $ ilaenv( 1, 'DORMBR', 'QLT', m, nrhs, m, -1 ) )
318 maxwrk = max( maxwrk, m*m+4*m+( m-1 )*
319 $ ilaenv( 1, 'DORMBR', 'PLN', m, nrhs, m, -1 ) )
320 IF( nrhs.GT.1 ) THEN
321 maxwrk = max( maxwrk, m*m+m+m*nrhs )
322 ELSE
323 maxwrk = max( maxwrk, m*m+2*m )
324 END IF
325 maxwrk = max( maxwrk, m+nrhs*
326 $ ilaenv( 1, 'DORMLQ', 'LT', n, nrhs, m, -1 ) )
327 maxwrk = max( maxwrk, m*m+4*m+wlalsd )
328! XXX: Ensure the Path 2a case below is triggered. The workspace
329! calculation should use queries for all routines eventually.
330 maxwrk = max( maxwrk,
331 $ 4*m+m*m+max( m, 2*m-4, nrhs, n-3*m ) )
332 ELSE
333*
334* Path 2 - remaining underdetermined cases.
335*
336 maxwrk = 3*m + ( n+m )*ilaenv( 1, 'DGEBRD', ' ', m, n,
337 $ -1, -1 )
338 maxwrk = max( maxwrk, 3*m+nrhs*
339 $ ilaenv( 1, 'DORMBR', 'QLT', m, nrhs, n, -1 ) )
340 maxwrk = max( maxwrk, 3*m+m*
341 $ ilaenv( 1, 'DORMBR', 'PLN', n, nrhs, m, -1 ) )
342 maxwrk = max( maxwrk, 3*m+wlalsd )
343 END IF
344 minwrk = max( 3*m+nrhs, 3*m+m, 3*m+wlalsd )
345 END IF
346 minwrk = min( minwrk, maxwrk )
347 work( 1 ) = maxwrk
348 iwork( 1 ) = liwork
349
350 IF( lwork.LT.minwrk .AND. .NOT.lquery ) THEN
351 info = -12
352 END IF
353 END IF
354*
355 IF( info.NE.0 ) THEN
356 CALL xerbla( 'DGELSD', -info )
357 RETURN
358 ELSE IF( lquery ) THEN
359 GO TO 10
360 END IF
361*
362* Quick return if possible.
363*
364 IF( m.EQ.0 .OR. n.EQ.0 ) THEN
365 rank = 0
366 RETURN
367 END IF
368*
369* Get machine parameters.
370*
371 eps = dlamch( 'P' )
372 sfmin = dlamch( 'S' )
373 smlnum = sfmin / eps
374 bignum = one / smlnum
375*
376* Scale A if max entry outside range [SMLNUM,BIGNUM].
377*
378 anrm = dlange( 'M', m, n, a, lda, work )
379 iascl = 0
380 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
381*
382* Scale matrix norm up to SMLNUM.
383*
384 CALL dlascl( 'G', 0, 0, anrm, smlnum, m, n, a, lda, info )
385 iascl = 1
386 ELSE IF( anrm.GT.bignum ) THEN
387*
388* Scale matrix norm down to BIGNUM.
389*
390 CALL dlascl( 'G', 0, 0, anrm, bignum, m, n, a, lda, info )
391 iascl = 2
392 ELSE IF( anrm.EQ.zero ) THEN
393*
394* Matrix all zero. Return zero solution.
395*
396 CALL dlaset( 'F', max( m, n ), nrhs, zero, zero, b, ldb )
397 CALL dlaset( 'F', minmn, 1, zero, zero, s, 1 )
398 rank = 0
399 GO TO 10
400 END IF
401*
402* Scale B if max entry outside range [SMLNUM,BIGNUM].
403*
404 bnrm = dlange( 'M', m, nrhs, b, ldb, work )
405 ibscl = 0
406 IF( bnrm.GT.zero .AND. bnrm.LT.smlnum ) THEN
407*
408* Scale matrix norm up to SMLNUM.
409*
410 CALL dlascl( 'G', 0, 0, bnrm, smlnum, m, nrhs, b, ldb, info )
411 ibscl = 1
412 ELSE IF( bnrm.GT.bignum ) THEN
413*
414* Scale matrix norm down to BIGNUM.
415*
416 CALL dlascl( 'G', 0, 0, bnrm, bignum, m, nrhs, b, ldb, info )
417 ibscl = 2
418 END IF
419*
420* If M < N make sure certain entries of B are zero.
421*
422 IF( m.LT.n )
423 $ CALL dlaset( 'F', n-m, nrhs, zero, zero, b( m+1, 1 ), ldb )
424*
425* Overdetermined case.
426*
427 IF( m.GE.n ) THEN
428*
429* Path 1 - overdetermined or exactly determined.
430*
431 mm = m
432 IF( m.GE.mnthr ) THEN
433*
434* Path 1a - overdetermined, with many more rows than columns.
435*
436 mm = n
437 itau = 1
438 nwork = itau + n
439*
440* Compute A=Q*R.
441* (Workspace: need 2*N, prefer N+N*NB)
442*
443 CALL dgeqrf( m, n, a, lda, work( itau ), work( nwork ),
444 $ lwork-nwork+1, info )
445*
446* Multiply B by transpose(Q).
447* (Workspace: need N+NRHS, prefer N+NRHS*NB)
448*
449 CALL dormqr( 'L', 'T', m, nrhs, n, a, lda, work( itau ), b,
450 $ ldb, work( nwork ), lwork-nwork+1, info )
451*
452* Zero out below R.
453*
454 IF( n.GT.1 ) THEN
455 CALL dlaset( 'L', n-1, n-1, zero, zero, a( 2, 1 ), lda )
456 END IF
457 END IF
458*
459 ie = 1
460 itauq = ie + n
461 itaup = itauq + n
462 nwork = itaup + n
463*
464* Bidiagonalize R in A.
465* (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
466*
467 CALL dgebrd( mm, n, a, lda, s, work( ie ), work( itauq ),
468 $ work( itaup ), work( nwork ), lwork-nwork+1,
469 $ info )
470*
471* Multiply B by transpose of left bidiagonalizing vectors of R.
472* (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
473*
474 CALL dormbr( 'Q', 'L', 'T', mm, nrhs, n, a, lda, work( itauq ),
475 $ b, ldb, work( nwork ), lwork-nwork+1, info )
476*
477* Solve the bidiagonal least squares problem.
478*
479 CALL dlalsd( 'U', smlsiz, n, nrhs, s, work( ie ), b, ldb,
480 $ rcond, rank, work( nwork ), iwork, info )
481 IF( info.NE.0 ) THEN
482 GO TO 10
483 END IF
484*
485* Multiply B by right bidiagonalizing vectors of R.
486*
487 CALL dormbr( 'P', 'L', 'N', n, nrhs, n, a, lda, work( itaup ),
488 $ b, ldb, work( nwork ), lwork-nwork+1, info )
489*
490 ELSE IF( n.GE.mnthr .AND. lwork.GE.4*m+m*m+
491 $ max( m, 2*m-4, nrhs, n-3*m, wlalsd ) ) THEN
492*
493* Path 2a - underdetermined, with many more columns than rows
494* and sufficient workspace for an efficient algorithm.
495*
496 ldwork = m
497 IF( lwork.GE.max( 4*m+m*lda+max( m, 2*m-4, nrhs, n-3*m ),
498 $ m*lda+m+m*nrhs, 4*m+m*lda+wlalsd ) )ldwork = lda
499 itau = 1
500 nwork = m + 1
501*
502* Compute A=L*Q.
503* (Workspace: need 2*M, prefer M+M*NB)
504*
505 CALL dgelqf( m, n, a, lda, work( itau ), work( nwork ),
506 $ lwork-nwork+1, info )
507 il = nwork
508*
509* Copy L to WORK(IL), zeroing out above its diagonal.
510*
511 CALL dlacpy( 'L', m, m, a, lda, work( il ), ldwork )
512 CALL dlaset( 'U', m-1, m-1, zero, zero, work( il+ldwork ),
513 $ ldwork )
514 ie = il + ldwork*m
515 itauq = ie + m
516 itaup = itauq + m
517 nwork = itaup + m
518*
519* Bidiagonalize L in WORK(IL).
520* (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
521*
522 CALL dgebrd( m, m, work( il ), ldwork, s, work( ie ),
523 $ work( itauq ), work( itaup ), work( nwork ),
524 $ lwork-nwork+1, info )
525*
526* Multiply B by transpose of left bidiagonalizing vectors of L.
527* (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
528*
529 CALL dormbr( 'Q', 'L', 'T', m, nrhs, m, work( il ), ldwork,
530 $ work( itauq ), b, ldb, work( nwork ),
531 $ lwork-nwork+1, info )
532*
533* Solve the bidiagonal least squares problem.
534*
535 CALL dlalsd( 'U', smlsiz, m, nrhs, s, work( ie ), b, ldb,
536 $ rcond, rank, work( nwork ), iwork, info )
537 IF( info.NE.0 ) THEN
538 GO TO 10
539 END IF
540*
541* Multiply B by right bidiagonalizing vectors of L.
542*
543 CALL dormbr( 'P', 'L', 'N', m, nrhs, m, work( il ), ldwork,
544 $ work( itaup ), b, ldb, work( nwork ),
545 $ lwork-nwork+1, info )
546*
547* Zero out below first M rows of B.
548*
549 CALL dlaset( 'F', n-m, nrhs, zero, zero, b( m+1, 1 ), ldb )
550 nwork = itau + m
551*
552* Multiply transpose(Q) by B.
553* (Workspace: need M+NRHS, prefer M+NRHS*NB)
554*
555 CALL dormlq( 'L', 'T', n, nrhs, m, a, lda, work( itau ), b,
556 $ ldb, work( nwork ), lwork-nwork+1, info )
557*
558 ELSE
559*
560* Path 2 - remaining underdetermined cases.
561*
562 ie = 1
563 itauq = ie + m
564 itaup = itauq + m
565 nwork = itaup + m
566*
567* Bidiagonalize A.
568* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
569*
570 CALL dgebrd( m, n, a, lda, s, work( ie ), work( itauq ),
571 $ work( itaup ), work( nwork ), lwork-nwork+1,
572 $ info )
573*
574* Multiply B by transpose of left bidiagonalizing vectors.
575* (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
576*
577 CALL dormbr( 'Q', 'L', 'T', m, nrhs, n, a, lda, work( itauq ),
578 $ b, ldb, work( nwork ), lwork-nwork+1, info )
579*
580* Solve the bidiagonal least squares problem.
581*
582 CALL dlalsd( 'L', smlsiz, m, nrhs, s, work( ie ), b, ldb,
583 $ rcond, rank, work( nwork ), iwork, info )
584 IF( info.NE.0 ) THEN
585 GO TO 10
586 END IF
587*
588* Multiply B by right bidiagonalizing vectors of A.
589*
590 CALL dormbr( 'P', 'L', 'N', n, nrhs, m, a, lda, work( itaup ),
591 $ b, ldb, work( nwork ), lwork-nwork+1, info )
592*
593 END IF
594*
595* Undo scaling.
596*
597 IF( iascl.EQ.1 ) THEN
598 CALL dlascl( 'G', 0, 0, anrm, smlnum, n, nrhs, b, ldb, info )
599 CALL dlascl( 'G', 0, 0, smlnum, anrm, minmn, 1, s, minmn,
600 $ info )
601 ELSE IF( iascl.EQ.2 ) THEN
602 CALL dlascl( 'G', 0, 0, anrm, bignum, n, nrhs, b, ldb, info )
603 CALL dlascl( 'G', 0, 0, bignum, anrm, minmn, 1, s, minmn,
604 $ info )
605 END IF
606 IF( ibscl.EQ.1 ) THEN
607 CALL dlascl( 'G', 0, 0, smlnum, bnrm, n, nrhs, b, ldb, info )
608 ELSE IF( ibscl.EQ.2 ) THEN
609 CALL dlascl( 'G', 0, 0, bignum, bnrm, n, nrhs, b, ldb, info )
610 END IF
611*
612 10 CONTINUE
613 work( 1 ) = maxwrk
614 iwork( 1 ) = liwork
615 RETURN
616*
617* End of DGELSD
618*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)
DGEBRD
Definition dgebrd.f:205
subroutine dgelqf(m, n, a, lda, tau, work, lwork, info)
DGELQF
Definition dgelqf.f:143
subroutine dgeqrf(m, n, a, lda, tau, work, lwork, info)
DGEQRF
Definition dgeqrf.f:146
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
subroutine dlalsd(uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, iwork, info)
DLALSD uses the singular value decomposition of A to solve the least squares problem.
Definition dlalsd.f:173
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:114
subroutine dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition dlascl.f:143
subroutine dlaset(uplo, m, n, alpha, beta, a, lda)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition dlaset.f:110
subroutine dormbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMBR
Definition dormbr.f:195
subroutine dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMLQ
Definition dormlq.f:167
subroutine dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMQR
Definition dormqr.f:167
Here is the call graph for this function:
Here is the caller graph for this function: