LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dormlq.f
Go to the documentation of this file.
1*> \brief \b DORMLQ
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DORMLQ + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormlq.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormlq.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormlq.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE DORMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
20* WORK, LWORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER SIDE, TRANS
24* INTEGER INFO, K, LDA, LDC, LWORK, M, N
25* ..
26* .. Array Arguments ..
27* DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> DORMLQ overwrites the general real M-by-N matrix C with
37*>
38*> SIDE = 'L' SIDE = 'R'
39*> TRANS = 'N': Q * C C * Q
40*> TRANS = 'T': Q**T * C C * Q**T
41*>
42*> where Q is a real orthogonal matrix defined as the product of k
43*> elementary reflectors
44*>
45*> Q = H(k) . . . H(2) H(1)
46*>
47*> as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N
48*> if SIDE = 'R'.
49*> \endverbatim
50*
51* Arguments:
52* ==========
53*
54*> \param[in] SIDE
55*> \verbatim
56*> SIDE is CHARACTER*1
57*> = 'L': apply Q or Q**T from the Left;
58*> = 'R': apply Q or Q**T from the Right.
59*> \endverbatim
60*>
61*> \param[in] TRANS
62*> \verbatim
63*> TRANS is CHARACTER*1
64*> = 'N': No transpose, apply Q;
65*> = 'T': Transpose, apply Q**T.
66*> \endverbatim
67*>
68*> \param[in] M
69*> \verbatim
70*> M is INTEGER
71*> The number of rows of the matrix C. M >= 0.
72*> \endverbatim
73*>
74*> \param[in] N
75*> \verbatim
76*> N is INTEGER
77*> The number of columns of the matrix C. N >= 0.
78*> \endverbatim
79*>
80*> \param[in] K
81*> \verbatim
82*> K is INTEGER
83*> The number of elementary reflectors whose product defines
84*> the matrix Q.
85*> If SIDE = 'L', M >= K >= 0;
86*> if SIDE = 'R', N >= K >= 0.
87*> \endverbatim
88*>
89*> \param[in] A
90*> \verbatim
91*> A is DOUBLE PRECISION array, dimension
92*> (LDA,M) if SIDE = 'L',
93*> (LDA,N) if SIDE = 'R'
94*> The i-th row must contain the vector which defines the
95*> elementary reflector H(i), for i = 1,2,...,k, as returned by
96*> DGELQF in the first k rows of its array argument A.
97*> \endverbatim
98*>
99*> \param[in] LDA
100*> \verbatim
101*> LDA is INTEGER
102*> The leading dimension of the array A. LDA >= max(1,K).
103*> \endverbatim
104*>
105*> \param[in] TAU
106*> \verbatim
107*> TAU is DOUBLE PRECISION array, dimension (K)
108*> TAU(i) must contain the scalar factor of the elementary
109*> reflector H(i), as returned by DGELQF.
110*> \endverbatim
111*>
112*> \param[in,out] C
113*> \verbatim
114*> C is DOUBLE PRECISION array, dimension (LDC,N)
115*> On entry, the M-by-N matrix C.
116*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
117*> \endverbatim
118*>
119*> \param[in] LDC
120*> \verbatim
121*> LDC is INTEGER
122*> The leading dimension of the array C. LDC >= max(1,M).
123*> \endverbatim
124*>
125*> \param[out] WORK
126*> \verbatim
127*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
128*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
129*> \endverbatim
130*>
131*> \param[in] LWORK
132*> \verbatim
133*> LWORK is INTEGER
134*> The dimension of the array WORK.
135*> If SIDE = 'L', LWORK >= max(1,N);
136*> if SIDE = 'R', LWORK >= max(1,M).
137*> For good performance, LWORK should generally be larger.
138*>
139*> If LWORK = -1, then a workspace query is assumed; the routine
140*> only calculates the optimal size of the WORK array, returns
141*> this value as the first entry of the WORK array, and no error
142*> message related to LWORK is issued by XERBLA.
143*> \endverbatim
144*>
145*> \param[out] INFO
146*> \verbatim
147*> INFO is INTEGER
148*> = 0: successful exit
149*> < 0: if INFO = -i, the i-th argument had an illegal value
150*> \endverbatim
151*
152* Authors:
153* ========
154*
155*> \author Univ. of Tennessee
156*> \author Univ. of California Berkeley
157*> \author Univ. of Colorado Denver
158*> \author NAG Ltd.
159*
160*> \ingroup unmlq
161*
162* =====================================================================
163 SUBROUTINE dormlq( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
164 $ WORK, LWORK, INFO )
165*
166* -- LAPACK computational routine --
167* -- LAPACK is a software package provided by Univ. of Tennessee, --
168* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169*
170* .. Scalar Arguments ..
171 CHARACTER SIDE, TRANS
172 INTEGER INFO, K, LDA, LDC, LWORK, M, N
173* ..
174* .. Array Arguments ..
175 DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
176* ..
177*
178* =====================================================================
179*
180* .. Parameters ..
181 INTEGER NBMAX, LDT, TSIZE
182 parameter( nbmax = 64, ldt = nbmax+1,
183 $ tsize = ldt*nbmax )
184* ..
185* .. Local Scalars ..
186 LOGICAL LEFT, LQUERY, NOTRAN
187 CHARACTER TRANST
188 INTEGER I, I1, I2, I3, IB, IC, IINFO, IWT, JC, LDWORK,
189 $ lwkopt, mi, nb, nbmin, ni, nq, nw
190* ..
191* .. External Functions ..
192 LOGICAL LSAME
193 INTEGER ILAENV
194 EXTERNAL lsame, ilaenv
195* ..
196* .. External Subroutines ..
197 EXTERNAL dlarfb, dlarft, dorml2, xerbla
198* ..
199* .. Intrinsic Functions ..
200 INTRINSIC max, min
201* ..
202* .. Executable Statements ..
203*
204* Test the input arguments
205*
206 info = 0
207 left = lsame( side, 'L' )
208 notran = lsame( trans, 'N' )
209 lquery = ( lwork.EQ.-1 )
210*
211* NQ is the order of Q and NW is the minimum dimension of WORK
212*
213 IF( left ) THEN
214 nq = m
215 nw = max( 1, n )
216 ELSE
217 nq = n
218 nw = max( 1, m )
219 END IF
220 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
221 info = -1
222 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) ) THEN
223 info = -2
224 ELSE IF( m.LT.0 ) THEN
225 info = -3
226 ELSE IF( n.LT.0 ) THEN
227 info = -4
228 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
229 info = -5
230 ELSE IF( lda.LT.max( 1, k ) ) THEN
231 info = -7
232 ELSE IF( ldc.LT.max( 1, m ) ) THEN
233 info = -10
234 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
235 info = -12
236 END IF
237*
238 IF( info.EQ.0 ) THEN
239*
240* Compute the workspace requirements
241*
242 nb = min( nbmax, ilaenv( 1, 'DORMLQ', side // trans, m, n,
243 $ k,
244 $ -1 ) )
245 lwkopt = nw*nb + tsize
246 work( 1 ) = lwkopt
247 END IF
248*
249 IF( info.NE.0 ) THEN
250 CALL xerbla( 'DORMLQ', -info )
251 RETURN
252 ELSE IF( lquery ) THEN
253 RETURN
254 END IF
255*
256* Quick return if possible
257*
258 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 ) THEN
259 work( 1 ) = 1
260 RETURN
261 END IF
262*
263 nbmin = 2
264 ldwork = nw
265 IF( nb.GT.1 .AND. nb.LT.k ) THEN
266 IF( lwork.LT.lwkopt ) THEN
267 nb = (lwork-tsize) / ldwork
268 nbmin = max( 2, ilaenv( 2, 'DORMLQ', side // trans, m, n,
269 $ k,
270 $ -1 ) )
271 END IF
272 END IF
273*
274 IF( nb.LT.nbmin .OR. nb.GE.k ) THEN
275*
276* Use unblocked code
277*
278 CALL dorml2( side, trans, m, n, k, a, lda, tau, c, ldc,
279 $ work,
280 $ iinfo )
281 ELSE
282*
283* Use blocked code
284*
285 iwt = 1 + nw*nb
286 IF( ( left .AND. notran ) .OR.
287 $ ( .NOT.left .AND. .NOT.notran ) ) THEN
288 i1 = 1
289 i2 = k
290 i3 = nb
291 ELSE
292 i1 = ( ( k-1 ) / nb )*nb + 1
293 i2 = 1
294 i3 = -nb
295 END IF
296*
297 IF( left ) THEN
298 ni = n
299 jc = 1
300 ELSE
301 mi = m
302 ic = 1
303 END IF
304*
305 IF( notran ) THEN
306 transt = 'T'
307 ELSE
308 transt = 'N'
309 END IF
310*
311 DO 10 i = i1, i2, i3
312 ib = min( nb, k-i+1 )
313*
314* Form the triangular factor of the block reflector
315* H = H(i) H(i+1) . . . H(i+ib-1)
316*
317 CALL dlarft( 'Forward', 'Rowwise', nq-i+1, ib, a( i, i ),
318 $ lda, tau( i ), work( iwt ), ldt )
319 IF( left ) THEN
320*
321* H or H**T is applied to C(i:m,1:n)
322*
323 mi = m - i + 1
324 ic = i
325 ELSE
326*
327* H or H**T is applied to C(1:m,i:n)
328*
329 ni = n - i + 1
330 jc = i
331 END IF
332*
333* Apply H or H**T
334*
335 CALL dlarfb( side, transt, 'Forward', 'Rowwise', mi, ni,
336 $ ib,
337 $ a( i, i ), lda, work( iwt ), ldt,
338 $ c( ic, jc ), ldc, work, ldwork )
339 10 CONTINUE
340 END IF
341 work( 1 ) = lwkopt
342 RETURN
343*
344* End of DORMLQ
345*
346 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition dlarfb.f:195
recursive subroutine dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition dlarft.f:162
subroutine dorml2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
DORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization determined by sge...
Definition dorml2.f:156
subroutine dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMLQ
Definition dormlq.f:165