LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dormbr.f
Go to the documentation of this file.
1*> \brief \b DORMBR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DORMBR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormbr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormbr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormbr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
22* LDC, WORK, LWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER SIDE, TRANS, VECT
26* INTEGER INFO, K, LDA, LDC, LWORK, M, N
27* ..
28* .. Array Arguments ..
29* DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
39*> with
40*> SIDE = 'L' SIDE = 'R'
41*> TRANS = 'N': Q * C C * Q
42*> TRANS = 'T': Q**T * C C * Q**T
43*>
44*> If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
45*> with
46*> SIDE = 'L' SIDE = 'R'
47*> TRANS = 'N': P * C C * P
48*> TRANS = 'T': P**T * C C * P**T
49*>
50*> Here Q and P**T are the orthogonal matrices determined by DGEBRD when
51*> reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
52*> P**T are defined as products of elementary reflectors H(i) and G(i)
53*> respectively.
54*>
55*> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
56*> order of the orthogonal matrix Q or P**T that is applied.
57*>
58*> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
59*> if nq >= k, Q = H(1) H(2) . . . H(k);
60*> if nq < k, Q = H(1) H(2) . . . H(nq-1).
61*>
62*> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
63*> if k < nq, P = G(1) G(2) . . . G(k);
64*> if k >= nq, P = G(1) G(2) . . . G(nq-1).
65*> \endverbatim
66*
67* Arguments:
68* ==========
69*
70*> \param[in] VECT
71*> \verbatim
72*> VECT is CHARACTER*1
73*> = 'Q': apply Q or Q**T;
74*> = 'P': apply P or P**T.
75*> \endverbatim
76*>
77*> \param[in] SIDE
78*> \verbatim
79*> SIDE is CHARACTER*1
80*> = 'L': apply Q, Q**T, P or P**T from the Left;
81*> = 'R': apply Q, Q**T, P or P**T from the Right.
82*> \endverbatim
83*>
84*> \param[in] TRANS
85*> \verbatim
86*> TRANS is CHARACTER*1
87*> = 'N': No transpose, apply Q or P;
88*> = 'T': Transpose, apply Q**T or P**T.
89*> \endverbatim
90*>
91*> \param[in] M
92*> \verbatim
93*> M is INTEGER
94*> The number of rows of the matrix C. M >= 0.
95*> \endverbatim
96*>
97*> \param[in] N
98*> \verbatim
99*> N is INTEGER
100*> The number of columns of the matrix C. N >= 0.
101*> \endverbatim
102*>
103*> \param[in] K
104*> \verbatim
105*> K is INTEGER
106*> If VECT = 'Q', the number of columns in the original
107*> matrix reduced by DGEBRD.
108*> If VECT = 'P', the number of rows in the original
109*> matrix reduced by DGEBRD.
110*> K >= 0.
111*> \endverbatim
112*>
113*> \param[in] A
114*> \verbatim
115*> A is DOUBLE PRECISION array, dimension
116*> (LDA,min(nq,K)) if VECT = 'Q'
117*> (LDA,nq) if VECT = 'P'
118*> The vectors which define the elementary reflectors H(i) and
119*> G(i), whose products determine the matrices Q and P, as
120*> returned by DGEBRD.
121*> \endverbatim
122*>
123*> \param[in] LDA
124*> \verbatim
125*> LDA is INTEGER
126*> The leading dimension of the array A.
127*> If VECT = 'Q', LDA >= max(1,nq);
128*> if VECT = 'P', LDA >= max(1,min(nq,K)).
129*> \endverbatim
130*>
131*> \param[in] TAU
132*> \verbatim
133*> TAU is DOUBLE PRECISION array, dimension (min(nq,K))
134*> TAU(i) must contain the scalar factor of the elementary
135*> reflector H(i) or G(i) which determines Q or P, as returned
136*> by DGEBRD in the array argument TAUQ or TAUP.
137*> \endverbatim
138*>
139*> \param[in,out] C
140*> \verbatim
141*> C is DOUBLE PRECISION array, dimension (LDC,N)
142*> On entry, the M-by-N matrix C.
143*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
144*> or P*C or P**T*C or C*P or C*P**T.
145*> \endverbatim
146*>
147*> \param[in] LDC
148*> \verbatim
149*> LDC is INTEGER
150*> The leading dimension of the array C. LDC >= max(1,M).
151*> \endverbatim
152*>
153*> \param[out] WORK
154*> \verbatim
155*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
156*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
157*> \endverbatim
158*>
159*> \param[in] LWORK
160*> \verbatim
161*> LWORK is INTEGER
162*> The dimension of the array WORK.
163*> If SIDE = 'L', LWORK >= max(1,N);
164*> if SIDE = 'R', LWORK >= max(1,M).
165*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
166*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
167*> blocksize.
168*>
169*> If LWORK = -1, then a workspace query is assumed; the routine
170*> only calculates the optimal size of the WORK array, returns
171*> this value as the first entry of the WORK array, and no error
172*> message related to LWORK is issued by XERBLA.
173*> \endverbatim
174*>
175*> \param[out] INFO
176*> \verbatim
177*> INFO is INTEGER
178*> = 0: successful exit
179*> < 0: if INFO = -i, the i-th argument had an illegal value
180*> \endverbatim
181*
182* Authors:
183* ========
184*
185*> \author Univ. of Tennessee
186*> \author Univ. of California Berkeley
187*> \author Univ. of Colorado Denver
188*> \author NAG Ltd.
189*
190*> \ingroup unmbr
191*
192* =====================================================================
193 SUBROUTINE dormbr( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
194 $ LDC, WORK, LWORK, INFO )
195*
196* -- LAPACK computational routine --
197* -- LAPACK is a software package provided by Univ. of Tennessee, --
198* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
199*
200* .. Scalar Arguments ..
201 CHARACTER SIDE, TRANS, VECT
202 INTEGER INFO, K, LDA, LDC, LWORK, M, N
203* ..
204* .. Array Arguments ..
205 DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
206* ..
207*
208* =====================================================================
209*
210* .. Local Scalars ..
211 LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN
212 CHARACTER TRANST
213 INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
214* ..
215* .. External Functions ..
216 LOGICAL LSAME
217 INTEGER ILAENV
218 EXTERNAL lsame, ilaenv
219* ..
220* .. External Subroutines ..
221 EXTERNAL dormlq, dormqr, xerbla
222* ..
223* .. Intrinsic Functions ..
224 INTRINSIC max, min
225* ..
226* .. Executable Statements ..
227*
228* Test the input arguments
229*
230 info = 0
231 applyq = lsame( vect, 'Q' )
232 left = lsame( side, 'L' )
233 notran = lsame( trans, 'N' )
234 lquery = ( lwork.EQ.-1 )
235*
236* NQ is the order of Q or P and NW is the minimum dimension of WORK
237*
238 IF( left ) THEN
239 nq = m
240 nw = max( 1, n )
241 ELSE
242 nq = n
243 nw = max( 1, m )
244 END IF
245 IF( .NOT.applyq .AND. .NOT.lsame( vect, 'P' ) ) THEN
246 info = -1
247 ELSE IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
248 info = -2
249 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) ) THEN
250 info = -3
251 ELSE IF( m.LT.0 ) THEN
252 info = -4
253 ELSE IF( n.LT.0 ) THEN
254 info = -5
255 ELSE IF( k.LT.0 ) THEN
256 info = -6
257 ELSE IF( ( applyq .AND. lda.LT.max( 1, nq ) ) .OR.
258 $ ( .NOT.applyq .AND. lda.LT.max( 1, min( nq, k ) ) ) )
259 $ THEN
260 info = -8
261 ELSE IF( ldc.LT.max( 1, m ) ) THEN
262 info = -11
263 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
264 info = -13
265 END IF
266*
267 IF( info.EQ.0 ) THEN
268 IF( applyq ) THEN
269 IF( left ) THEN
270 nb = ilaenv( 1, 'DORMQR', side // trans, m-1, n, m-1,
271 $ -1 )
272 ELSE
273 nb = ilaenv( 1, 'DORMQR', side // trans, m, n-1, n-1,
274 $ -1 )
275 END IF
276 ELSE
277 IF( left ) THEN
278 nb = ilaenv( 1, 'DORMLQ', side // trans, m-1, n, m-1,
279 $ -1 )
280 ELSE
281 nb = ilaenv( 1, 'DORMLQ', side // trans, m, n-1, n-1,
282 $ -1 )
283 END IF
284 END IF
285 lwkopt = nw*nb
286 work( 1 ) = lwkopt
287 END IF
288*
289 IF( info.NE.0 ) THEN
290 CALL xerbla( 'DORMBR', -info )
291 RETURN
292 ELSE IF( lquery ) THEN
293 RETURN
294 END IF
295*
296* Quick return if possible
297*
298 work( 1 ) = 1
299 IF( m.EQ.0 .OR. n.EQ.0 )
300 $ RETURN
301*
302 IF( applyq ) THEN
303*
304* Apply Q
305*
306 IF( nq.GE.k ) THEN
307*
308* Q was determined by a call to DGEBRD with nq >= k
309*
310 CALL dormqr( side, trans, m, n, k, a, lda, tau, c, ldc,
311 $ work, lwork, iinfo )
312 ELSE IF( nq.GT.1 ) THEN
313*
314* Q was determined by a call to DGEBRD with nq < k
315*
316 IF( left ) THEN
317 mi = m - 1
318 ni = n
319 i1 = 2
320 i2 = 1
321 ELSE
322 mi = m
323 ni = n - 1
324 i1 = 1
325 i2 = 2
326 END IF
327 CALL dormqr( side, trans, mi, ni, nq-1, a( 2, 1 ), lda, tau,
328 $ c( i1, i2 ), ldc, work, lwork, iinfo )
329 END IF
330 ELSE
331*
332* Apply P
333*
334 IF( notran ) THEN
335 transt = 'T'
336 ELSE
337 transt = 'N'
338 END IF
339 IF( nq.GT.k ) THEN
340*
341* P was determined by a call to DGEBRD with nq > k
342*
343 CALL dormlq( side, transt, m, n, k, a, lda, tau, c, ldc,
344 $ work, lwork, iinfo )
345 ELSE IF( nq.GT.1 ) THEN
346*
347* P was determined by a call to DGEBRD with nq <= k
348*
349 IF( left ) THEN
350 mi = m - 1
351 ni = n
352 i1 = 2
353 i2 = 1
354 ELSE
355 mi = m
356 ni = n - 1
357 i1 = 1
358 i2 = 2
359 END IF
360 CALL dormlq( side, transt, mi, ni, nq-1, a( 1, 2 ), lda,
361 $ tau, c( i1, i2 ), ldc, work, lwork, iinfo )
362 END IF
363 END IF
364 work( 1 ) = lwkopt
365 RETURN
366*
367* End of DORMBR
368*
369 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dormbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMBR
Definition dormbr.f:195
subroutine dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMLQ
Definition dormlq.f:167
subroutine dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMQR
Definition dormqr.f:167