LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zhpevd.f
Go to the documentation of this file.
1*> \brief <b> ZHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZHPEVD + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpevd.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpevd.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpevd.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
20* RWORK, LRWORK, IWORK, LIWORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER JOBZ, UPLO
24* INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
25* ..
26* .. Array Arguments ..
27* INTEGER IWORK( * )
28* DOUBLE PRECISION RWORK( * ), W( * )
29* COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of
39*> a complex Hermitian matrix A in packed storage. If eigenvectors are
40*> desired, it uses a divide and conquer algorithm.
41*>
42*> \endverbatim
43*
44* Arguments:
45* ==========
46*
47*> \param[in] JOBZ
48*> \verbatim
49*> JOBZ is CHARACTER*1
50*> = 'N': Compute eigenvalues only;
51*> = 'V': Compute eigenvalues and eigenvectors.
52*> \endverbatim
53*>
54*> \param[in] UPLO
55*> \verbatim
56*> UPLO is CHARACTER*1
57*> = 'U': Upper triangle of A is stored;
58*> = 'L': Lower triangle of A is stored.
59*> \endverbatim
60*>
61*> \param[in] N
62*> \verbatim
63*> N is INTEGER
64*> The order of the matrix A. N >= 0.
65*> \endverbatim
66*>
67*> \param[in,out] AP
68*> \verbatim
69*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
70*> On entry, the upper or lower triangle of the Hermitian matrix
71*> A, packed columnwise in a linear array. The j-th column of A
72*> is stored in the array AP as follows:
73*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
74*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
75*>
76*> On exit, AP is overwritten by values generated during the
77*> reduction to tridiagonal form. If UPLO = 'U', the diagonal
78*> and first superdiagonal of the tridiagonal matrix T overwrite
79*> the corresponding elements of A, and if UPLO = 'L', the
80*> diagonal and first subdiagonal of T overwrite the
81*> corresponding elements of A.
82*> \endverbatim
83*>
84*> \param[out] W
85*> \verbatim
86*> W is DOUBLE PRECISION array, dimension (N)
87*> If INFO = 0, the eigenvalues in ascending order.
88*> \endverbatim
89*>
90*> \param[out] Z
91*> \verbatim
92*> Z is COMPLEX*16 array, dimension (LDZ, N)
93*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
94*> eigenvectors of the matrix A, with the i-th column of Z
95*> holding the eigenvector associated with W(i).
96*> If JOBZ = 'N', then Z is not referenced.
97*> \endverbatim
98*>
99*> \param[in] LDZ
100*> \verbatim
101*> LDZ is INTEGER
102*> The leading dimension of the array Z. LDZ >= 1, and if
103*> JOBZ = 'V', LDZ >= max(1,N).
104*> \endverbatim
105*>
106*> \param[out] WORK
107*> \verbatim
108*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
109*> On exit, if INFO = 0, WORK(1) returns the required LWORK.
110*> \endverbatim
111*>
112*> \param[in] LWORK
113*> \verbatim
114*> LWORK is INTEGER
115*> The dimension of array WORK.
116*> If N <= 1, LWORK must be at least 1.
117*> If JOBZ = 'N' and N > 1, LWORK must be at least N.
118*> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
119*>
120*> If LWORK = -1, then a workspace query is assumed; the routine
121*> only calculates the required sizes of the WORK, RWORK and
122*> IWORK arrays, returns these values as the first entries of
123*> the WORK, RWORK and IWORK arrays, and no error message
124*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
125*> \endverbatim
126*>
127*> \param[out] RWORK
128*> \verbatim
129*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
130*> On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
131*> \endverbatim
132*>
133*> \param[in] LRWORK
134*> \verbatim
135*> LRWORK is INTEGER
136*> The dimension of array RWORK.
137*> If N <= 1, LRWORK must be at least 1.
138*> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
139*> If JOBZ = 'V' and N > 1, LRWORK must be at least
140*> 1 + 5*N + 2*N**2.
141*>
142*> If LRWORK = -1, then a workspace query is assumed; the
143*> routine only calculates the required sizes of the WORK, RWORK
144*> and IWORK arrays, returns these values as the first entries
145*> of the WORK, RWORK and IWORK arrays, and no error message
146*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
147*> \endverbatim
148*>
149*> \param[out] IWORK
150*> \verbatim
151*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
152*> On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
153*> \endverbatim
154*>
155*> \param[in] LIWORK
156*> \verbatim
157*> LIWORK is INTEGER
158*> The dimension of array IWORK.
159*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
160*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
161*>
162*> If LIWORK = -1, then a workspace query is assumed; the
163*> routine only calculates the required sizes of the WORK, RWORK
164*> and IWORK arrays, returns these values as the first entries
165*> of the WORK, RWORK and IWORK arrays, and no error message
166*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
167*> \endverbatim
168*>
169*> \param[out] INFO
170*> \verbatim
171*> INFO is INTEGER
172*> = 0: successful exit
173*> < 0: if INFO = -i, the i-th argument had an illegal value.
174*> > 0: if INFO = i, the algorithm failed to converge; i
175*> off-diagonal elements of an intermediate tridiagonal
176*> form did not converge to zero.
177*> \endverbatim
178*
179* Authors:
180* ========
181*
182*> \author Univ. of Tennessee
183*> \author Univ. of California Berkeley
184*> \author Univ. of Colorado Denver
185*> \author NAG Ltd.
186*
187*> \ingroup hpevd
188*
189* =====================================================================
190 SUBROUTINE zhpevd( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
191 $ RWORK, LRWORK, IWORK, LIWORK, INFO )
192*
193* -- LAPACK driver routine --
194* -- LAPACK is a software package provided by Univ. of Tennessee, --
195* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
196*
197* .. Scalar Arguments ..
198 CHARACTER JOBZ, UPLO
199 INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
200* ..
201* .. Array Arguments ..
202 INTEGER IWORK( * )
203 DOUBLE PRECISION RWORK( * ), W( * )
204 COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
205* ..
206*
207* =====================================================================
208*
209* .. Parameters ..
210 DOUBLE PRECISION ZERO, ONE
211 parameter( zero = 0.0d+0, one = 1.0d+0 )
212 COMPLEX*16 CONE
213 parameter( cone = ( 1.0d+0, 0.0d+0 ) )
214* ..
215* .. Local Scalars ..
216 LOGICAL LQUERY, WANTZ
217 INTEGER IINFO, IMAX, INDE, INDRWK, INDTAU, INDWRK,
218 $ iscale, liwmin, llrwk, llwrk, lrwmin, lwmin
219 DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
220 $ smlnum
221* ..
222* .. External Functions ..
223 LOGICAL LSAME
224 DOUBLE PRECISION DLAMCH, ZLANHP
225 EXTERNAL lsame, dlamch, zlanhp
226* ..
227* .. External Subroutines ..
228 EXTERNAL dscal, dsterf, xerbla, zdscal, zhptrd,
229 $ zstedc,
230 $ zupmtr
231* ..
232* .. Intrinsic Functions ..
233 INTRINSIC sqrt
234* ..
235* .. Executable Statements ..
236*
237* Test the input parameters.
238*
239 wantz = lsame( jobz, 'V' )
240 lquery = ( lwork.EQ.-1 .OR. lrwork.EQ.-1 .OR. liwork.EQ.-1 )
241*
242 info = 0
243 IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
244 info = -1
245 ELSE IF( .NOT.( lsame( uplo, 'L' ) .OR.
246 $ lsame( uplo, 'U' ) ) )
247 $ THEN
248 info = -2
249 ELSE IF( n.LT.0 ) THEN
250 info = -3
251 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
252 info = -7
253 END IF
254*
255 IF( info.EQ.0 ) THEN
256 IF( n.LE.1 ) THEN
257 lwmin = 1
258 liwmin = 1
259 lrwmin = 1
260 ELSE
261 IF( wantz ) THEN
262 lwmin = 2*n
263 lrwmin = 1 + 5*n + 2*n**2
264 liwmin = 3 + 5*n
265 ELSE
266 lwmin = n
267 lrwmin = n
268 liwmin = 1
269 END IF
270 END IF
271 work( 1 ) = lwmin
272 rwork( 1 ) = real( lrwmin )
273 iwork( 1 ) = liwmin
274*
275 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
276 info = -9
277 ELSE IF( lrwork.LT.lrwmin .AND. .NOT.lquery ) THEN
278 info = -11
279 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
280 info = -13
281 END IF
282 END IF
283*
284 IF( info.NE.0 ) THEN
285 CALL xerbla( 'ZHPEVD', -info )
286 RETURN
287 ELSE IF( lquery ) THEN
288 RETURN
289 END IF
290*
291* Quick return if possible
292*
293 IF( n.EQ.0 )
294 $ RETURN
295*
296 IF( n.EQ.1 ) THEN
297 w( 1 ) = dble( ap( 1 ) )
298 IF( wantz )
299 $ z( 1, 1 ) = cone
300 RETURN
301 END IF
302*
303* Get machine constants.
304*
305 safmin = dlamch( 'Safe minimum' )
306 eps = dlamch( 'Precision' )
307 smlnum = safmin / eps
308 bignum = one / smlnum
309 rmin = sqrt( smlnum )
310 rmax = sqrt( bignum )
311*
312* Scale matrix to allowable range, if necessary.
313*
314 anrm = zlanhp( 'M', uplo, n, ap, rwork )
315 iscale = 0
316 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
317 iscale = 1
318 sigma = rmin / anrm
319 ELSE IF( anrm.GT.rmax ) THEN
320 iscale = 1
321 sigma = rmax / anrm
322 END IF
323 IF( iscale.EQ.1 ) THEN
324 CALL zdscal( ( n*( n+1 ) ) / 2, sigma, ap, 1 )
325 END IF
326*
327* Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
328*
329 inde = 1
330 indtau = 1
331 indrwk = inde + n
332 indwrk = indtau + n
333 llwrk = lwork - indwrk + 1
334 llrwk = lrwork - indrwk + 1
335 CALL zhptrd( uplo, n, ap, w, rwork( inde ), work( indtau ),
336 $ iinfo )
337*
338* For eigenvalues only, call DSTERF. For eigenvectors, first call
339* ZUPGTR to generate the orthogonal matrix, then call ZSTEDC.
340*
341 IF( .NOT.wantz ) THEN
342 CALL dsterf( n, w, rwork( inde ), info )
343 ELSE
344 CALL zstedc( 'I', n, w, rwork( inde ), z, ldz,
345 $ work( indwrk ),
346 $ llwrk, rwork( indrwk ), llrwk, iwork, liwork,
347 $ info )
348 CALL zupmtr( 'L', uplo, 'N', n, n, ap, work( indtau ), z,
349 $ ldz,
350 $ work( indwrk ), iinfo )
351 END IF
352*
353* If matrix was scaled, then rescale eigenvalues appropriately.
354*
355 IF( iscale.EQ.1 ) THEN
356 IF( info.EQ.0 ) THEN
357 imax = n
358 ELSE
359 imax = info - 1
360 END IF
361 CALL dscal( imax, one / sigma, w, 1 )
362 END IF
363*
364 work( 1 ) = lwmin
365 rwork( 1 ) = real( lrwmin )
366 iwork( 1 ) = liwmin
367 RETURN
368*
369* End of ZHPEVD
370*
371 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zhpevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition zhpevd.f:192
subroutine zhptrd(uplo, n, ap, d, e, tau, info)
ZHPTRD
Definition zhptrd.f:149
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
subroutine zdscal(n, da, zx, incx)
ZDSCAL
Definition zdscal.f:78
subroutine zstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
ZSTEDC
Definition zstedc.f:204
subroutine dsterf(n, d, e, info)
DSTERF
Definition dsterf.f:84
subroutine zupmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)
ZUPMTR
Definition zupmtr.f:149