LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zstedc.f
Go to the documentation of this file.
1*> \brief \b ZSTEDC
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZSTEDC + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zstedc.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zstedc.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zstedc.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
22* LRWORK, IWORK, LIWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER COMPZ
26* INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
27* ..
28* .. Array Arguments ..
29* INTEGER IWORK( * )
30* DOUBLE PRECISION D( * ), E( * ), RWORK( * )
31* COMPLEX*16 WORK( * ), Z( LDZ, * )
32* ..
33*
34*
35*> \par Purpose:
36* =============
37*>
38*> \verbatim
39*>
40*> ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a
41*> symmetric tridiagonal matrix using the divide and conquer method.
42*> The eigenvectors of a full or band complex Hermitian matrix can also
43*> be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this
44*> matrix to tridiagonal form.
45*>
46*> This code makes very mild assumptions about floating point
47*> arithmetic. It will work on machines with a guard digit in
48*> add/subtract, or on those binary machines without guard digits
49*> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
50*> It could conceivably fail on hexadecimal or decimal machines
51*> without guard digits, but we know of none. See DLAED3 for details.
52*> \endverbatim
53*
54* Arguments:
55* ==========
56*
57*> \param[in] COMPZ
58*> \verbatim
59*> COMPZ is CHARACTER*1
60*> = 'N': Compute eigenvalues only.
61*> = 'I': Compute eigenvectors of tridiagonal matrix also.
62*> = 'V': Compute eigenvectors of original Hermitian matrix
63*> also. On entry, Z contains the unitary matrix used
64*> to reduce the original matrix to tridiagonal form.
65*> \endverbatim
66*>
67*> \param[in] N
68*> \verbatim
69*> N is INTEGER
70*> The dimension of the symmetric tridiagonal matrix. N >= 0.
71*> \endverbatim
72*>
73*> \param[in,out] D
74*> \verbatim
75*> D is DOUBLE PRECISION array, dimension (N)
76*> On entry, the diagonal elements of the tridiagonal matrix.
77*> On exit, if INFO = 0, the eigenvalues in ascending order.
78*> \endverbatim
79*>
80*> \param[in,out] E
81*> \verbatim
82*> E is DOUBLE PRECISION array, dimension (N-1)
83*> On entry, the subdiagonal elements of the tridiagonal matrix.
84*> On exit, E has been destroyed.
85*> \endverbatim
86*>
87*> \param[in,out] Z
88*> \verbatim
89*> Z is COMPLEX*16 array, dimension (LDZ,N)
90*> On entry, if COMPZ = 'V', then Z contains the unitary
91*> matrix used in the reduction to tridiagonal form.
92*> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
93*> orthonormal eigenvectors of the original Hermitian matrix,
94*> and if COMPZ = 'I', Z contains the orthonormal eigenvectors
95*> of the symmetric tridiagonal matrix.
96*> If COMPZ = 'N', then Z is not referenced.
97*> \endverbatim
98*>
99*> \param[in] LDZ
100*> \verbatim
101*> LDZ is INTEGER
102*> The leading dimension of the array Z. LDZ >= 1.
103*> If eigenvectors are desired, then LDZ >= max(1,N).
104*> \endverbatim
105*>
106*> \param[out] WORK
107*> \verbatim
108*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
109*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
110*> \endverbatim
111*>
112*> \param[in] LWORK
113*> \verbatim
114*> LWORK is INTEGER
115*> The dimension of the array WORK.
116*> If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1.
117*> If COMPZ = 'V' and N > 1, LWORK must be at least N*N.
118*> Note that for COMPZ = 'V', then if N is less than or
119*> equal to the minimum divide size, usually 25, then LWORK need
120*> only be 1.
121*>
122*> If LWORK = -1, then a workspace query is assumed; the routine
123*> only calculates the optimal sizes of the WORK, RWORK and
124*> IWORK arrays, returns these values as the first entries of
125*> the WORK, RWORK and IWORK arrays, and no error message
126*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
127*> \endverbatim
128*>
129*> \param[out] RWORK
130*> \verbatim
131*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
132*> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
133*> \endverbatim
134*>
135*> \param[in] LRWORK
136*> \verbatim
137*> LRWORK is INTEGER
138*> The dimension of the array RWORK.
139*> If COMPZ = 'N' or N <= 1, LRWORK must be at least 1.
140*> If COMPZ = 'V' and N > 1, LRWORK must be at least
141*> 1 + 3*N + 2*N*lg N + 4*N**2 ,
142*> where lg( N ) = smallest integer k such
143*> that 2**k >= N.
144*> If COMPZ = 'I' and N > 1, LRWORK must be at least
145*> 1 + 4*N + 2*N**2 .
146*> Note that for COMPZ = 'I' or 'V', then if N is less than or
147*> equal to the minimum divide size, usually 25, then LRWORK
148*> need only be max(1,2*(N-1)).
149*>
150*> If LRWORK = -1, then a workspace query is assumed; the
151*> routine only calculates the optimal sizes of the WORK, RWORK
152*> and IWORK arrays, returns these values as the first entries
153*> of the WORK, RWORK and IWORK arrays, and no error message
154*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
155*> \endverbatim
156*>
157*> \param[out] IWORK
158*> \verbatim
159*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
160*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
161*> \endverbatim
162*>
163*> \param[in] LIWORK
164*> \verbatim
165*> LIWORK is INTEGER
166*> The dimension of the array IWORK.
167*> If COMPZ = 'N' or N <= 1, LIWORK must be at least 1.
168*> If COMPZ = 'V' or N > 1, LIWORK must be at least
169*> 6 + 6*N + 5*N*lg N.
170*> If COMPZ = 'I' or N > 1, LIWORK must be at least
171*> 3 + 5*N .
172*> Note that for COMPZ = 'I' or 'V', then if N is less than or
173*> equal to the minimum divide size, usually 25, then LIWORK
174*> need only be 1.
175*>
176*> If LIWORK = -1, then a workspace query is assumed; the
177*> routine only calculates the optimal sizes of the WORK, RWORK
178*> and IWORK arrays, returns these values as the first entries
179*> of the WORK, RWORK and IWORK arrays, and no error message
180*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
181*> \endverbatim
182*>
183*> \param[out] INFO
184*> \verbatim
185*> INFO is INTEGER
186*> = 0: successful exit.
187*> < 0: if INFO = -i, the i-th argument had an illegal value.
188*> > 0: The algorithm failed to compute an eigenvalue while
189*> working on the submatrix lying in rows and columns
190*> INFO/(N+1) through mod(INFO,N+1).
191*> \endverbatim
192*
193* Authors:
194* ========
195*
196*> \author Univ. of Tennessee
197*> \author Univ. of California Berkeley
198*> \author Univ. of Colorado Denver
199*> \author NAG Ltd.
200*
201*> \ingroup complex16OTHERcomputational
202*
203*> \par Contributors:
204* ==================
205*>
206*> Jeff Rutter, Computer Science Division, University of California
207*> at Berkeley, USA
208*
209* =====================================================================
210 SUBROUTINE zstedc( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
211 $ LRWORK, IWORK, LIWORK, INFO )
212*
213* -- LAPACK computational routine --
214* -- LAPACK is a software package provided by Univ. of Tennessee, --
215* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
216*
217* .. Scalar Arguments ..
218 CHARACTER COMPZ
219 INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
220* ..
221* .. Array Arguments ..
222 INTEGER IWORK( * )
223 DOUBLE PRECISION D( * ), E( * ), RWORK( * )
224 COMPLEX*16 WORK( * ), Z( LDZ, * )
225* ..
226*
227* =====================================================================
228*
229* .. Parameters ..
230 DOUBLE PRECISION ZERO, ONE, TWO
231 parameter( zero = 0.0d0, one = 1.0d0, two = 2.0d0 )
232* ..
233* .. Local Scalars ..
234 LOGICAL LQUERY
235 INTEGER FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN, LL,
236 $ lrwmin, lwmin, m, smlsiz, start
237 DOUBLE PRECISION EPS, ORGNRM, P, TINY
238* ..
239* .. External Functions ..
240 LOGICAL LSAME
241 INTEGER ILAENV
242 DOUBLE PRECISION DLAMCH, DLANST
243 EXTERNAL lsame, ilaenv, dlamch, dlanst
244* ..
245* .. External Subroutines ..
246 EXTERNAL dlascl, dlaset, dstedc, dsteqr, dsterf, xerbla,
248* ..
249* .. Intrinsic Functions ..
250 INTRINSIC abs, dble, int, log, max, mod, sqrt
251* ..
252* .. Executable Statements ..
253*
254* Test the input parameters.
255*
256 info = 0
257 lquery = ( lwork.EQ.-1 .OR. lrwork.EQ.-1 .OR. liwork.EQ.-1 )
258*
259 IF( lsame( compz, 'N' ) ) THEN
260 icompz = 0
261 ELSE IF( lsame( compz, 'V' ) ) THEN
262 icompz = 1
263 ELSE IF( lsame( compz, 'I' ) ) THEN
264 icompz = 2
265 ELSE
266 icompz = -1
267 END IF
268 IF( icompz.LT.0 ) THEN
269 info = -1
270 ELSE IF( n.LT.0 ) THEN
271 info = -2
272 ELSE IF( ( ldz.LT.1 ) .OR.
273 $ ( icompz.GT.0 .AND. ldz.LT.max( 1, n ) ) ) THEN
274 info = -6
275 END IF
276*
277 IF( info.EQ.0 ) THEN
278*
279* Compute the workspace requirements
280*
281 smlsiz = ilaenv( 9, 'ZSTEDC', ' ', 0, 0, 0, 0 )
282 IF( n.LE.1 .OR. icompz.EQ.0 ) THEN
283 lwmin = 1
284 liwmin = 1
285 lrwmin = 1
286 ELSE IF( n.LE.smlsiz ) THEN
287 lwmin = 1
288 liwmin = 1
289 lrwmin = 2*( n - 1 )
290 ELSE IF( icompz.EQ.1 ) THEN
291 lgn = int( log( dble( n ) ) / log( two ) )
292 IF( 2**lgn.LT.n )
293 $ lgn = lgn + 1
294 IF( 2**lgn.LT.n )
295 $ lgn = lgn + 1
296 lwmin = n*n
297 lrwmin = 1 + 3*n + 2*n*lgn + 4*n**2
298 liwmin = 6 + 6*n + 5*n*lgn
299 ELSE IF( icompz.EQ.2 ) THEN
300 lwmin = 1
301 lrwmin = 1 + 4*n + 2*n**2
302 liwmin = 3 + 5*n
303 END IF
304 work( 1 ) = lwmin
305 rwork( 1 ) = lrwmin
306 iwork( 1 ) = liwmin
307*
308 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
309 info = -8
310 ELSE IF( lrwork.LT.lrwmin .AND. .NOT.lquery ) THEN
311 info = -10
312 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
313 info = -12
314 END IF
315 END IF
316*
317 IF( info.NE.0 ) THEN
318 CALL xerbla( 'ZSTEDC', -info )
319 RETURN
320 ELSE IF( lquery ) THEN
321 RETURN
322 END IF
323*
324* Quick return if possible
325*
326 IF( n.EQ.0 )
327 $ RETURN
328 IF( n.EQ.1 ) THEN
329 IF( icompz.NE.0 )
330 $ z( 1, 1 ) = one
331 RETURN
332 END IF
333*
334* If the following conditional clause is removed, then the routine
335* will use the Divide and Conquer routine to compute only the
336* eigenvalues, which requires (3N + 3N**2) real workspace and
337* (2 + 5N + 2N lg(N)) integer workspace.
338* Since on many architectures DSTERF is much faster than any other
339* algorithm for finding eigenvalues only, it is used here
340* as the default. If the conditional clause is removed, then
341* information on the size of workspace needs to be changed.
342*
343* If COMPZ = 'N', use DSTERF to compute the eigenvalues.
344*
345 IF( icompz.EQ.0 ) THEN
346 CALL dsterf( n, d, e, info )
347 GO TO 70
348 END IF
349*
350* If N is smaller than the minimum divide size (SMLSIZ+1), then
351* solve the problem with another solver.
352*
353 IF( n.LE.smlsiz ) THEN
354*
355 CALL zsteqr( compz, n, d, e, z, ldz, rwork, info )
356*
357 ELSE
358*
359* If COMPZ = 'I', we simply call DSTEDC instead.
360*
361 IF( icompz.EQ.2 ) THEN
362 CALL dlaset( 'Full', n, n, zero, one, rwork, n )
363 ll = n*n + 1
364 CALL dstedc( 'I', n, d, e, rwork, n,
365 $ rwork( ll ), lrwork-ll+1, iwork, liwork, info )
366 DO 20 j = 1, n
367 DO 10 i = 1, n
368 z( i, j ) = rwork( ( j-1 )*n+i )
369 10 CONTINUE
370 20 CONTINUE
371 GO TO 70
372 END IF
373*
374* From now on, only option left to be handled is COMPZ = 'V',
375* i.e. ICOMPZ = 1.
376*
377* Scale.
378*
379 orgnrm = dlanst( 'M', n, d, e )
380 IF( orgnrm.EQ.zero )
381 $ GO TO 70
382*
383 eps = dlamch( 'Epsilon' )
384*
385 start = 1
386*
387* while ( START <= N )
388*
389 30 CONTINUE
390 IF( start.LE.n ) THEN
391*
392* Let FINISH be the position of the next subdiagonal entry
393* such that E( FINISH ) <= TINY or FINISH = N if no such
394* subdiagonal exists. The matrix identified by the elements
395* between START and FINISH constitutes an independent
396* sub-problem.
397*
398 finish = start
399 40 CONTINUE
400 IF( finish.LT.n ) THEN
401 tiny = eps*sqrt( abs( d( finish ) ) )*
402 $ sqrt( abs( d( finish+1 ) ) )
403 IF( abs( e( finish ) ).GT.tiny ) THEN
404 finish = finish + 1
405 GO TO 40
406 END IF
407 END IF
408*
409* (Sub) Problem determined. Compute its size and solve it.
410*
411 m = finish - start + 1
412 IF( m.GT.smlsiz ) THEN
413*
414* Scale.
415*
416 orgnrm = dlanst( 'M', m, d( start ), e( start ) )
417 CALL dlascl( 'G', 0, 0, orgnrm, one, m, 1, d( start ), m,
418 $ info )
419 CALL dlascl( 'G', 0, 0, orgnrm, one, m-1, 1, e( start ),
420 $ m-1, info )
421*
422 CALL zlaed0( n, m, d( start ), e( start ), z( 1, start ),
423 $ ldz, work, n, rwork, iwork, info )
424 IF( info.GT.0 ) THEN
425 info = ( info / ( m+1 )+start-1 )*( n+1 ) +
426 $ mod( info, ( m+1 ) ) + start - 1
427 GO TO 70
428 END IF
429*
430* Scale back.
431*
432 CALL dlascl( 'G', 0, 0, one, orgnrm, m, 1, d( start ), m,
433 $ info )
434*
435 ELSE
436 CALL dsteqr( 'I', m, d( start ), e( start ), rwork, m,
437 $ rwork( m*m+1 ), info )
438 CALL zlacrm( n, m, z( 1, start ), ldz, rwork, m, work, n,
439 $ rwork( m*m+1 ) )
440 CALL zlacpy( 'A', n, m, work, n, z( 1, start ), ldz )
441 IF( info.GT.0 ) THEN
442 info = start*( n+1 ) + finish
443 GO TO 70
444 END IF
445 END IF
446*
447 start = finish + 1
448 GO TO 30
449 END IF
450*
451* endwhile
452*
453*
454* Use Selection Sort to minimize swaps of eigenvectors
455*
456 DO 60 ii = 2, n
457 i = ii - 1
458 k = i
459 p = d( i )
460 DO 50 j = ii, n
461 IF( d( j ).LT.p ) THEN
462 k = j
463 p = d( j )
464 END IF
465 50 CONTINUE
466 IF( k.NE.i ) THEN
467 d( k ) = d( i )
468 d( i ) = p
469 CALL zswap( n, z( 1, i ), 1, z( 1, k ), 1 )
470 END IF
471 60 CONTINUE
472 END IF
473*
474 70 CONTINUE
475 work( 1 ) = lwmin
476 rwork( 1 ) = lrwmin
477 iwork( 1 ) = liwmin
478*
479 RETURN
480*
481* End of ZSTEDC
482*
483 END
subroutine dlascl(TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition: dlascl.f:143
subroutine dlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: dlaset.f:110
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine dsteqr(COMPZ, N, D, E, Z, LDZ, WORK, INFO)
DSTEQR
Definition: dsteqr.f:131
subroutine dstedc(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO)
DSTEDC
Definition: dstedc.f:188
subroutine dsterf(N, D, E, INFO)
DSTERF
Definition: dsterf.f:86
subroutine zswap(N, ZX, INCX, ZY, INCY)
ZSWAP
Definition: zswap.f:81
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlacrm(M, N, A, LDA, B, LDB, C, LDC, RWORK)
ZLACRM multiplies a complex matrix by a square real matrix.
Definition: zlacrm.f:114
subroutine zsteqr(COMPZ, N, D, E, Z, LDZ, WORK, INFO)
ZSTEQR
Definition: zsteqr.f:132
subroutine zlaed0(QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK, INFO)
ZLAED0 used by ZSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmet...
Definition: zlaed0.f:145
subroutine zstedc(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
ZSTEDC
Definition: zstedc.f:212