LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zhptrd()

subroutine zhptrd ( character uplo,
integer n,
complex*16, dimension( * ) ap,
double precision, dimension( * ) d,
double precision, dimension( * ) e,
complex*16, dimension( * ) tau,
integer info )

ZHPTRD

Download ZHPTRD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZHPTRD reduces a complex Hermitian matrix A stored in packed form to
!> real symmetric tridiagonal form T by a unitary similarity
!> transformation: Q**H * A * Q = T.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in,out]AP
!>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the Hermitian matrix
!>          A, packed columnwise in a linear array.  The j-th column of A
!>          is stored in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
!>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
!>          of A are overwritten by the corresponding elements of the
!>          tridiagonal matrix T, and the elements above the first
!>          superdiagonal, with the array TAU, represent the unitary
!>          matrix Q as a product of elementary reflectors; if UPLO
!>          = 'L', the diagonal and first subdiagonal of A are over-
!>          written by the corresponding elements of the tridiagonal
!>          matrix T, and the elements below the first subdiagonal, with
!>          the array TAU, represent the unitary matrix Q as a product
!>          of elementary reflectors. See Further Details.
!> 
[out]D
!>          D is DOUBLE PRECISION array, dimension (N)
!>          The diagonal elements of the tridiagonal matrix T:
!>          D(i) = A(i,i).
!> 
[out]E
!>          E is DOUBLE PRECISION array, dimension (N-1)
!>          The off-diagonal elements of the tridiagonal matrix T:
!>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
!> 
[out]TAU
!>          TAU is COMPLEX*16 array, dimension (N-1)
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  If UPLO = 'U', the matrix Q is represented as a product of elementary
!>  reflectors
!>
!>     Q = H(n-1) . . . H(2) H(1).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
!>  overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
!>
!>  If UPLO = 'L', the matrix Q is represented as a product of elementary
!>  reflectors
!>
!>     Q = H(1) H(2) . . . H(n-1).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
!>  overwriting A(i+2:n,i), and tau is stored in TAU(i).
!> 

Definition at line 148 of file zhptrd.f.

149*
150* -- LAPACK computational routine --
151* -- LAPACK is a software package provided by Univ. of Tennessee, --
152* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
153*
154* .. Scalar Arguments ..
155 CHARACTER UPLO
156 INTEGER INFO, N
157* ..
158* .. Array Arguments ..
159 DOUBLE PRECISION D( * ), E( * )
160 COMPLEX*16 AP( * ), TAU( * )
161* ..
162*
163* =====================================================================
164*
165* .. Parameters ..
166 COMPLEX*16 ONE, ZERO, HALF
167 parameter( one = ( 1.0d+0, 0.0d+0 ),
168 $ zero = ( 0.0d+0, 0.0d+0 ),
169 $ half = ( 0.5d+0, 0.0d+0 ) )
170* ..
171* .. Local Scalars ..
172 LOGICAL UPPER
173 INTEGER I, I1, I1I1, II
174 COMPLEX*16 ALPHA, TAUI
175* ..
176* .. External Subroutines ..
177 EXTERNAL xerbla, zaxpy, zhpmv, zhpr2, zlarfg
178* ..
179* .. External Functions ..
180 LOGICAL LSAME
181 COMPLEX*16 ZDOTC
182 EXTERNAL lsame, zdotc
183* ..
184* .. Intrinsic Functions ..
185 INTRINSIC dble
186* ..
187* .. Executable Statements ..
188*
189* Test the input parameters
190*
191 info = 0
192 upper = lsame( uplo, 'U' )
193 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
194 info = -1
195 ELSE IF( n.LT.0 ) THEN
196 info = -2
197 END IF
198 IF( info.NE.0 ) THEN
199 CALL xerbla( 'ZHPTRD', -info )
200 RETURN
201 END IF
202*
203* Quick return if possible
204*
205 IF( n.LE.0 )
206 $ RETURN
207*
208 IF( upper ) THEN
209*
210* Reduce the upper triangle of A.
211* I1 is the index in AP of A(1,I+1).
212*
213 i1 = n*( n-1 ) / 2 + 1
214 ap( i1+n-1 ) = dble( ap( i1+n-1 ) )
215 DO 10 i = n - 1, 1, -1
216*
217* Generate elementary reflector H(i) = I - tau * v * v**H
218* to annihilate A(1:i-1,i+1)
219*
220 alpha = ap( i1+i-1 )
221 CALL zlarfg( i, alpha, ap( i1 ), 1, taui )
222 e( i ) = dble( alpha )
223*
224 IF( taui.NE.zero ) THEN
225*
226* Apply H(i) from both sides to A(1:i,1:i)
227*
228 ap( i1+i-1 ) = one
229*
230* Compute y := tau * A * v storing y in TAU(1:i)
231*
232 CALL zhpmv( uplo, i, taui, ap, ap( i1 ), 1, zero, tau,
233 $ 1 )
234*
235* Compute w := y - 1/2 * tau * (y**H *v) * v
236*
237 alpha = -half*taui*zdotc( i, tau, 1, ap( i1 ), 1 )
238 CALL zaxpy( i, alpha, ap( i1 ), 1, tau, 1 )
239*
240* Apply the transformation as a rank-2 update:
241* A := A - v * w**H - w * v**H
242*
243 CALL zhpr2( uplo, i, -one, ap( i1 ), 1, tau, 1, ap )
244*
245 END IF
246 ap( i1+i-1 ) = e( i )
247 d( i+1 ) = dble( ap( i1+i ) )
248 tau( i ) = taui
249 i1 = i1 - i
250 10 CONTINUE
251 d( 1 ) = dble( ap( 1 ) )
252 ELSE
253*
254* Reduce the lower triangle of A. II is the index in AP of
255* A(i,i) and I1I1 is the index of A(i+1,i+1).
256*
257 ii = 1
258 ap( 1 ) = dble( ap( 1 ) )
259 DO 20 i = 1, n - 1
260 i1i1 = ii + n - i + 1
261*
262* Generate elementary reflector H(i) = I - tau * v * v**H
263* to annihilate A(i+2:n,i)
264*
265 alpha = ap( ii+1 )
266 CALL zlarfg( n-i, alpha, ap( ii+2 ), 1, taui )
267 e( i ) = dble( alpha )
268*
269 IF( taui.NE.zero ) THEN
270*
271* Apply H(i) from both sides to A(i+1:n,i+1:n)
272*
273 ap( ii+1 ) = one
274*
275* Compute y := tau * A * v storing y in TAU(i:n-1)
276*
277 CALL zhpmv( uplo, n-i, taui, ap( i1i1 ), ap( ii+1 ),
278 $ 1,
279 $ zero, tau( i ), 1 )
280*
281* Compute w := y - 1/2 * tau * (y**H *v) * v
282*
283 alpha = -half*taui*zdotc( n-i, tau( i ), 1,
284 $ ap( ii+1 ),
285 $ 1 )
286 CALL zaxpy( n-i, alpha, ap( ii+1 ), 1, tau( i ), 1 )
287*
288* Apply the transformation as a rank-2 update:
289* A := A - v * w**H - w * v**H
290*
291 CALL zhpr2( uplo, n-i, -one, ap( ii+1 ), 1, tau( i ),
292 $ 1,
293 $ ap( i1i1 ) )
294*
295 END IF
296 ap( ii+1 ) = e( i )
297 d( i ) = dble( ap( ii ) )
298 tau( i ) = taui
299 ii = i1i1
300 20 CONTINUE
301 d( n ) = dble( ap( ii ) )
302 END IF
303*
304 RETURN
305*
306* End of ZHPTRD
307*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
complex *16 function zdotc(n, zx, incx, zy, incy)
ZDOTC
Definition zdotc.f:83
subroutine zhpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
ZHPMV
Definition zhpmv.f:149
subroutine zhpr2(uplo, n, alpha, x, incx, y, incy, ap)
ZHPR2
Definition zhpr2.f:145
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
Definition zlarfg.f:104
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: