LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
cgebrd.f
Go to the documentation of this file.
1*> \brief \b CGEBRD
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CGEBRD + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgebrd.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgebrd.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgebrd.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
20* INFO )
21*
22* .. Scalar Arguments ..
23* INTEGER INFO, LDA, LWORK, M, N
24* ..
25* .. Array Arguments ..
26* REAL D( * ), E( * )
27* COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ),
28* $ WORK( * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> CGEBRD reduces a general complex M-by-N matrix A to upper or lower
38*> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
39*>
40*> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] M
47*> \verbatim
48*> M is INTEGER
49*> The number of rows in the matrix A. M >= 0.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*> N is INTEGER
55*> The number of columns in the matrix A. N >= 0.
56*> \endverbatim
57*>
58*> \param[in,out] A
59*> \verbatim
60*> A is COMPLEX array, dimension (LDA,N)
61*> On entry, the M-by-N general matrix to be reduced.
62*> On exit,
63*> if m >= n, the diagonal and the first superdiagonal are
64*> overwritten with the upper bidiagonal matrix B; the
65*> elements below the diagonal, with the array TAUQ, represent
66*> the unitary matrix Q as a product of elementary
67*> reflectors, and the elements above the first superdiagonal,
68*> with the array TAUP, represent the unitary matrix P as
69*> a product of elementary reflectors;
70*> if m < n, the diagonal and the first subdiagonal are
71*> overwritten with the lower bidiagonal matrix B; the
72*> elements below the first subdiagonal, with the array TAUQ,
73*> represent the unitary matrix Q as a product of
74*> elementary reflectors, and the elements above the diagonal,
75*> with the array TAUP, represent the unitary matrix P as
76*> a product of elementary reflectors.
77*> See Further Details.
78*> \endverbatim
79*>
80*> \param[in] LDA
81*> \verbatim
82*> LDA is INTEGER
83*> The leading dimension of the array A. LDA >= max(1,M).
84*> \endverbatim
85*>
86*> \param[out] D
87*> \verbatim
88*> D is REAL array, dimension (min(M,N))
89*> The diagonal elements of the bidiagonal matrix B:
90*> D(i) = A(i,i).
91*> \endverbatim
92*>
93*> \param[out] E
94*> \verbatim
95*> E is REAL array, dimension (min(M,N)-1)
96*> The off-diagonal elements of the bidiagonal matrix B:
97*> if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
98*> if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
99*> \endverbatim
100*>
101*> \param[out] TAUQ
102*> \verbatim
103*> TAUQ is COMPLEX array, dimension (min(M,N))
104*> The scalar factors of the elementary reflectors which
105*> represent the unitary matrix Q. See Further Details.
106*> \endverbatim
107*>
108*> \param[out] TAUP
109*> \verbatim
110*> TAUP is COMPLEX array, dimension (min(M,N))
111*> The scalar factors of the elementary reflectors which
112*> represent the unitary matrix P. See Further Details.
113*> \endverbatim
114*>
115*> \param[out] WORK
116*> \verbatim
117*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
118*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
119*> \endverbatim
120*>
121*> \param[in] LWORK
122*> \verbatim
123*> LWORK is INTEGER
124*> The length of the array WORK.
125*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MAX(M,N), otherwise.
126*> For optimum performance LWORK >= (M+N)*NB, where NB
127*> is the optimal blocksize.
128*>
129*> If LWORK = -1, then a workspace query is assumed; the routine
130*> only calculates the optimal size of the WORK array, returns
131*> this value as the first entry of the WORK array, and no error
132*> message related to LWORK is issued by XERBLA.
133*> \endverbatim
134*>
135*> \param[out] INFO
136*> \verbatim
137*> INFO is INTEGER
138*> = 0: successful exit.
139*> < 0: if INFO = -i, the i-th argument had an illegal value.
140*> \endverbatim
141*
142* Authors:
143* ========
144*
145*> \author Univ. of Tennessee
146*> \author Univ. of California Berkeley
147*> \author Univ. of Colorado Denver
148*> \author NAG Ltd.
149*
150*> \ingroup gebrd
151*
152*> \par Further Details:
153* =====================
154*>
155*> \verbatim
156*>
157*> The matrices Q and P are represented as products of elementary
158*> reflectors:
159*>
160*> If m >= n,
161*>
162*> Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
163*>
164*> Each H(i) and G(i) has the form:
165*>
166*> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
167*>
168*> where tauq and taup are complex scalars, and v and u are complex
169*> vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
170*> A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
171*> A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
172*>
173*> If m < n,
174*>
175*> Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
176*>
177*> Each H(i) and G(i) has the form:
178*>
179*> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
180*>
181*> where tauq and taup are complex scalars, and v and u are complex
182*> vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
183*> A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
184*> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
185*>
186*> The contents of A on exit are illustrated by the following examples:
187*>
188*> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
189*>
190*> ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
191*> ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
192*> ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
193*> ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
194*> ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
195*> ( v1 v2 v3 v4 v5 )
196*>
197*> where d and e denote diagonal and off-diagonal elements of B, vi
198*> denotes an element of the vector defining H(i), and ui an element of
199*> the vector defining G(i).
200*> \endverbatim
201*>
202* =====================================================================
203 SUBROUTINE cgebrd( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
204 $ INFO )
205*
206* -- LAPACK computational routine --
207* -- LAPACK is a software package provided by Univ. of Tennessee, --
208* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
209*
210* .. Scalar Arguments ..
211 INTEGER INFO, LDA, LWORK, M, N
212* ..
213* .. Array Arguments ..
214 REAL D( * ), E( * )
215 COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ),
216 $ work( * )
217* ..
218*
219* =====================================================================
220*
221* .. Parameters ..
222 COMPLEX ONE
223 parameter( one = ( 1.0e+0, 0.0e+0 ) )
224* ..
225* .. Local Scalars ..
226 LOGICAL LQUERY
227 INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKMIN, LWKOPT,
228 $ minmn, nb, nbmin, nx, ws
229* ..
230* .. External Subroutines ..
231 EXTERNAL cgebd2, cgemm, clabrd, xerbla
232* ..
233* .. Intrinsic Functions ..
234 INTRINSIC max, min, real
235* ..
236* .. External Functions ..
237 INTEGER ILAENV
238 REAL SROUNDUP_LWORK
239 EXTERNAL ilaenv, sroundup_lwork
240* ..
241* .. Executable Statements ..
242*
243* Test the input parameters
244*
245 info = 0
246 minmn = min( m, n )
247 IF( minmn.EQ.0 ) THEN
248 lwkmin = 1
249 lwkopt = 1
250 ELSE
251 lwkmin = max( m, n )
252 nb = max( 1, ilaenv( 1, 'CGEBRD', ' ', m, n, -1, -1 ) )
253 lwkopt = ( m+n )*nb
254 END IF
255 work( 1 ) = sroundup_lwork( lwkopt )
256 lquery = ( lwork.EQ.-1 )
257 IF( m.LT.0 ) THEN
258 info = -1
259 ELSE IF( n.LT.0 ) THEN
260 info = -2
261 ELSE IF( lda.LT.max( 1, m ) ) THEN
262 info = -4
263 ELSE IF( lwork.LT.lwkmin .AND. .NOT.lquery ) THEN
264 info = -10
265 END IF
266 IF( info.LT.0 ) THEN
267 CALL xerbla( 'CGEBRD', -info )
268 RETURN
269 ELSE IF( lquery ) THEN
270 RETURN
271 END IF
272*
273* Quick return if possible
274*
275 IF( minmn.EQ.0 ) THEN
276 work( 1 ) = 1
277 RETURN
278 END IF
279*
280 ws = max( m, n )
281 ldwrkx = m
282 ldwrky = n
283*
284 IF( nb.GT.1 .AND. nb.LT.minmn ) THEN
285*
286* Set the crossover point NX.
287*
288 nx = max( nb, ilaenv( 3, 'CGEBRD', ' ', m, n, -1, -1 ) )
289*
290* Determine when to switch from blocked to unblocked code.
291*
292 IF( nx.LT.minmn ) THEN
293 ws = lwkopt
294 IF( lwork.LT.ws ) THEN
295*
296* Not enough work space for the optimal NB, consider using
297* a smaller block size.
298*
299 nbmin = ilaenv( 2, 'CGEBRD', ' ', m, n, -1, -1 )
300 IF( lwork.GE.( m+n )*nbmin ) THEN
301 nb = lwork / ( m+n )
302 ELSE
303 nb = 1
304 nx = minmn
305 END IF
306 END IF
307 END IF
308 ELSE
309 nx = minmn
310 END IF
311*
312 DO 30 i = 1, minmn - nx, nb
313*
314* Reduce rows and columns i:i+ib-1 to bidiagonal form and return
315* the matrices X and Y which are needed to update the unreduced
316* part of the matrix
317*
318 CALL clabrd( m-i+1, n-i+1, nb, a( i, i ), lda, d( i ),
319 $ e( i ),
320 $ tauq( i ), taup( i ), work, ldwrkx,
321 $ work( ldwrkx*nb+1 ), ldwrky )
322*
323* Update the trailing submatrix A(i+ib:m,i+ib:n), using
324* an update of the form A := A - V*Y**H - X*U**H
325*
326 CALL cgemm( 'No transpose', 'Conjugate transpose', m-i-nb+1,
327 $ n-i-nb+1, nb, -one, a( i+nb, i ), lda,
328 $ work( ldwrkx*nb+nb+1 ), ldwrky, one,
329 $ a( i+nb, i+nb ), lda )
330 CALL cgemm( 'No transpose', 'No transpose', m-i-nb+1,
331 $ n-i-nb+1,
332 $ nb, -one, work( nb+1 ), ldwrkx, a( i, i+nb ), lda,
333 $ one, a( i+nb, i+nb ), lda )
334*
335* Copy diagonal and off-diagonal elements of B back into A
336*
337 IF( m.GE.n ) THEN
338 DO 10 j = i, i + nb - 1
339 a( j, j ) = d( j )
340 a( j, j+1 ) = e( j )
341 10 CONTINUE
342 ELSE
343 DO 20 j = i, i + nb - 1
344 a( j, j ) = d( j )
345 a( j+1, j ) = e( j )
346 20 CONTINUE
347 END IF
348 30 CONTINUE
349*
350* Use unblocked code to reduce the remainder of the matrix
351*
352 CALL cgebd2( m-i+1, n-i+1, a( i, i ), lda, d( i ), e( i ),
353 $ tauq( i ), taup( i ), work, iinfo )
354 work( 1 ) = sroundup_lwork( ws )
355 RETURN
356*
357* End of CGEBRD
358*
359 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
CGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
Definition cgebd2.f:188
subroutine cgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)
CGEBRD
Definition cgebrd.f:205
subroutine cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CGEMM
Definition cgemm.f:188
subroutine clabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
CLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
Definition clabrd.f:211