189 SUBROUTINE cgebd2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
196 INTEGER INFO, LDA, M, N
200 COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
207 parameter( zero = ( 0.0e+0, 0.0e+0 ),
208 $ one = ( 1.0e+0, 0.0e+0 ) )
218 INTRINSIC conjg, max, min
227 ELSE IF( n.LT.0 )
THEN
229 ELSE IF( lda.LT.max( 1, m ) )
THEN
233 CALL xerbla(
'CGEBD2', -info )
246 CALL clarfg( m-i+1, alpha, a( min( i+1, m ), i ), 1,
248 d( i ) = real( alpha )
254 $
CALL clarf(
'Left', m-i+1, n-i, a( i, i ), 1,
255 $ conjg( tauq( i ) ), a( i, i+1 ), lda, work )
263 CALL clacgv( n-i, a( i, i+1 ), lda )
265 CALL clarfg( n-i, alpha, a( i, min( i+2, n ) ),
267 e( i ) = real( alpha )
272 CALL clarf(
'Right', m-i, n-i, a( i, i+1 ), lda,
273 $ taup( i ), a( i+1, i+1 ), lda, work )
274 CALL clacgv( n-i, a( i, i+1 ), lda )
288 CALL clacgv( n-i+1, a( i, i ), lda )
290 CALL clarfg( n-i+1, alpha, a( i, min( i+1, n ) ), lda,
292 d( i ) = real( alpha )
298 $
CALL clarf(
'Right', m-i, n-i+1, a( i, i ), lda,
299 $ taup( i ), a( i+1, i ), lda, work )
300 CALL clacgv( n-i+1, a( i, i ), lda )
309 CALL clarfg( m-i, alpha, a( min( i+2, m ), i ), 1,
311 e( i ) = real( alpha )
316 CALL clarf(
'Left', m-i, n-i, a( i+1, i ), 1,
317 $ conjg( tauq( i ) ), a( i+1, i+1 ), lda,
subroutine xerbla(srname, info)
subroutine cgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
CGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
subroutine clarf(side, m, n, v, incv, tau, c, ldc, work)
CLARF applies an elementary reflector to a general rectangular matrix.
subroutine clarfg(n, alpha, x, incx, tau)
CLARFG generates an elementary reflector (Householder matrix).