187 SUBROUTINE cgebd2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
194 INTEGER INFO, LDA, M, N
198 COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
205 parameter( zero = ( 0.0e+0, 0.0e+0 ) )
215 INTRINSIC conjg, max, min
224 ELSE IF( n.LT.0 )
THEN
226 ELSE IF( lda.LT.max( 1, m ) )
THEN
230 CALL xerbla(
'CGEBD2', -info )
243 CALL clarfg( m-i+1, alpha, a( min( i+1, m ), i ), 1,
245 d( i ) = real( alpha )
250 $
CALL clarf1f(
'Left', m-i+1, n-i, a( i, i ), 1,
251 $ conjg( tauq( i ) ), a( i, i+1 ), lda,
260 CALL clacgv( n-i, a( i, i+1 ), lda )
262 CALL clarfg( n-i, alpha, a( i, min( i+2, n ) ),
264 e( i ) = real( alpha )
268 CALL clarf1f(
'Right', m-i, n-i, a( i, i+1 ), lda,
269 $ taup( i ), a( i+1, i+1 ), lda, work )
270 CALL clacgv( n-i, a( i, i+1 ), lda )
284 CALL clacgv( n-i+1, a( i, i ), lda )
286 CALL clarfg( n-i+1, alpha, a( i, min( i+1, n ) ), lda,
288 d( i ) = real( alpha )
293 $
CALL clarf1f(
'Right', m-i, n-i+1, a( i, i ), lda,
294 $ taup( i ), a( i+1, i ), lda, work )
295 CALL clacgv( n-i+1, a( i, i ), lda )
304 CALL clarfg( m-i, alpha, a( min( i+2, m ), i ), 1,
306 e( i ) = real( alpha )
310 CALL clarf1f(
'Left', m-i, n-i, a( i+1, i ), 1,
311 $ conjg( tauq( i ) ), a( i+1, i+1 ), lda,
subroutine clarf1f(side, m, n, v, incv, tau, c, ldc, work)
CLARF1F applies an elementary reflector to a general rectangular
subroutine cgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
CGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.