LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cgebd2.f
Go to the documentation of this file.
1*> \brief \b CGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CGEBD2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgebd2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgebd2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgebd2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, LDA, M, N
23* ..
24* .. Array Arguments ..
25* REAL D( * ), E( * )
26* COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
27* ..
28*
29*
30*> \par Purpose:
31* =============
32*>
33*> \verbatim
34*>
35*> CGEBD2 reduces a complex general m by n matrix A to upper or lower
36*> real bidiagonal form B by a unitary transformation: Q**H * A * P = B.
37*>
38*> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
39*> \endverbatim
40*
41* Arguments:
42* ==========
43*
44*> \param[in] M
45*> \verbatim
46*> M is INTEGER
47*> The number of rows in the matrix A. M >= 0.
48*> \endverbatim
49*>
50*> \param[in] N
51*> \verbatim
52*> N is INTEGER
53*> The number of columns in the matrix A. N >= 0.
54*> \endverbatim
55*>
56*> \param[in,out] A
57*> \verbatim
58*> A is COMPLEX array, dimension (LDA,N)
59*> On entry, the m by n general matrix to be reduced.
60*> On exit,
61*> if m >= n, the diagonal and the first superdiagonal are
62*> overwritten with the upper bidiagonal matrix B; the
63*> elements below the diagonal, with the array TAUQ, represent
64*> the unitary matrix Q as a product of elementary
65*> reflectors, and the elements above the first superdiagonal,
66*> with the array TAUP, represent the unitary matrix P as
67*> a product of elementary reflectors;
68*> if m < n, the diagonal and the first subdiagonal are
69*> overwritten with the lower bidiagonal matrix B; the
70*> elements below the first subdiagonal, with the array TAUQ,
71*> represent the unitary matrix Q as a product of
72*> elementary reflectors, and the elements above the diagonal,
73*> with the array TAUP, represent the unitary matrix P as
74*> a product of elementary reflectors.
75*> See Further Details.
76*> \endverbatim
77*>
78*> \param[in] LDA
79*> \verbatim
80*> LDA is INTEGER
81*> The leading dimension of the array A. LDA >= max(1,M).
82*> \endverbatim
83*>
84*> \param[out] D
85*> \verbatim
86*> D is REAL array, dimension (min(M,N))
87*> The diagonal elements of the bidiagonal matrix B:
88*> D(i) = A(i,i).
89*> \endverbatim
90*>
91*> \param[out] E
92*> \verbatim
93*> E is REAL array, dimension (min(M,N)-1)
94*> The off-diagonal elements of the bidiagonal matrix B:
95*> if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
96*> if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
97*> \endverbatim
98*>
99*> \param[out] TAUQ
100*> \verbatim
101*> TAUQ is COMPLEX array, dimension (min(M,N))
102*> The scalar factors of the elementary reflectors which
103*> represent the unitary matrix Q. See Further Details.
104*> \endverbatim
105*>
106*> \param[out] TAUP
107*> \verbatim
108*> TAUP is COMPLEX array, dimension (min(M,N))
109*> The scalar factors of the elementary reflectors which
110*> represent the unitary matrix P. See Further Details.
111*> \endverbatim
112*>
113*> \param[out] WORK
114*> \verbatim
115*> WORK is COMPLEX array, dimension (max(M,N))
116*> \endverbatim
117*>
118*> \param[out] INFO
119*> \verbatim
120*> INFO is INTEGER
121*> = 0: successful exit
122*> < 0: if INFO = -i, the i-th argument had an illegal value.
123*> \endverbatim
124*
125* Authors:
126* ========
127*
128*> \author Univ. of Tennessee
129*> \author Univ. of California Berkeley
130*> \author Univ. of Colorado Denver
131*> \author NAG Ltd.
132*
133*> \ingroup gebd2
134* @precisions normal c -> s d z
135*
136*> \par Further Details:
137* =====================
138*>
139*> \verbatim
140*>
141*> The matrices Q and P are represented as products of elementary
142*> reflectors:
143*>
144*> If m >= n,
145*>
146*> Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
147*>
148*> Each H(i) and G(i) has the form:
149*>
150*> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
151*>
152*> where tauq and taup are complex scalars, and v and u are complex
153*> vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
154*> A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
155*> A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
156*>
157*> If m < n,
158*>
159*> Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
160*>
161*> Each H(i) and G(i) has the form:
162*>
163*> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
164*>
165*> where tauq and taup are complex scalars, v and u are complex vectors;
166*> v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
167*> u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
168*> tauq is stored in TAUQ(i) and taup in TAUP(i).
169*>
170*> The contents of A on exit are illustrated by the following examples:
171*>
172*> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
173*>
174*> ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
175*> ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
176*> ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
177*> ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
178*> ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
179*> ( v1 v2 v3 v4 v5 )
180*>
181*> where d and e denote diagonal and off-diagonal elements of B, vi
182*> denotes an element of the vector defining H(i), and ui an element of
183*> the vector defining G(i).
184*> \endverbatim
185*>
186* =====================================================================
187 SUBROUTINE cgebd2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
188*
189* -- LAPACK computational routine --
190* -- LAPACK is a software package provided by Univ. of Tennessee, --
191* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
192*
193* .. Scalar Arguments ..
194 INTEGER INFO, LDA, M, N
195* ..
196* .. Array Arguments ..
197 REAL D( * ), E( * )
198 COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
199* ..
200*
201* =====================================================================
202*
203* .. Parameters ..
204 COMPLEX ZERO
205 parameter( zero = ( 0.0e+0, 0.0e+0 ) )
206* ..
207* .. Local Scalars ..
208 INTEGER I
209 COMPLEX ALPHA
210* ..
211* .. External Subroutines ..
212 EXTERNAL clacgv, clarf1f, clarfg, xerbla
213* ..
214* .. Intrinsic Functions ..
215 INTRINSIC conjg, max, min
216* ..
217* .. Executable Statements ..
218*
219* Test the input parameters
220*
221 info = 0
222 IF( m.LT.0 ) THEN
223 info = -1
224 ELSE IF( n.LT.0 ) THEN
225 info = -2
226 ELSE IF( lda.LT.max( 1, m ) ) THEN
227 info = -4
228 END IF
229 IF( info.LT.0 ) THEN
230 CALL xerbla( 'CGEBD2', -info )
231 RETURN
232 END IF
233*
234 IF( m.GE.n ) THEN
235*
236* Reduce to upper bidiagonal form
237*
238 DO 10 i = 1, n
239*
240* Generate elementary reflector H(i) to annihilate A(i+1:m,i)
241*
242 alpha = a( i, i )
243 CALL clarfg( m-i+1, alpha, a( min( i+1, m ), i ), 1,
244 $ tauq( i ) )
245 d( i ) = real( alpha )
246*
247* Apply H(i)**H to A(i:m,i+1:n) from the left
248*
249 IF( i.LT.n )
250 $ CALL clarf1f( 'Left', m-i+1, n-i, a( i, i ), 1,
251 $ conjg( tauq( i ) ), a( i, i+1 ), lda,
252 $ work )
253 a( i, i ) = d( i )
254*
255 IF( i.LT.n ) THEN
256*
257* Generate elementary reflector G(i) to annihilate
258* A(i,i+2:n)
259*
260 CALL clacgv( n-i, a( i, i+1 ), lda )
261 alpha = a( i, i+1 )
262 CALL clarfg( n-i, alpha, a( i, min( i+2, n ) ),
263 $ lda, taup( i ) )
264 e( i ) = real( alpha )
265*
266* Apply G(i) to A(i+1:m,i+1:n) from the right
267*
268 CALL clarf1f( 'Right', m-i, n-i, a( i, i+1 ), lda,
269 $ taup( i ), a( i+1, i+1 ), lda, work )
270 CALL clacgv( n-i, a( i, i+1 ), lda )
271 a( i, i+1 ) = e( i )
272 ELSE
273 taup( i ) = zero
274 END IF
275 10 CONTINUE
276 ELSE
277*
278* Reduce to lower bidiagonal form
279*
280 DO 20 i = 1, m
281*
282* Generate elementary reflector G(i) to annihilate A(i,i+1:n)
283*
284 CALL clacgv( n-i+1, a( i, i ), lda )
285 alpha = a( i, i )
286 CALL clarfg( n-i+1, alpha, a( i, min( i+1, n ) ), lda,
287 $ taup( i ) )
288 d( i ) = real( alpha )
289*
290* Apply G(i) to A(i+1:m,i:n) from the right
291*
292 IF( i.LT.m )
293 $ CALL clarf1f( 'Right', m-i, n-i+1, a( i, i ), lda,
294 $ taup( i ), a( i+1, i ), lda, work )
295 CALL clacgv( n-i+1, a( i, i ), lda )
296 a( i, i ) = d( i )
297*
298 IF( i.LT.m ) THEN
299*
300* Generate elementary reflector H(i) to annihilate
301* A(i+2:m,i)
302*
303 alpha = a( i+1, i )
304 CALL clarfg( m-i, alpha, a( min( i+2, m ), i ), 1,
305 $ tauq( i ) )
306 e( i ) = real( alpha )
307*
308* Apply H(i)**H to A(i+1:m,i+1:n) from the left
309*
310 CALL clarf1f( 'Left', m-i, n-i, a( i+1, i ), 1,
311 $ conjg( tauq( i ) ), a( i+1, i+1 ), lda,
312 $ work )
313 a( i+1, i ) = e( i )
314 ELSE
315 tauq( i ) = zero
316 END IF
317 20 CONTINUE
318 END IF
319 RETURN
320*
321* End of CGEBD2
322*
323 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1f(side, m, n, v, incv, tau, c, ldc, work)
CLARF1F applies an elementary reflector to a general rectangular
Definition clarf1f.f:126
subroutine cgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
CGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
Definition cgebd2.f:188
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:72
subroutine clarfg(n, alpha, x, incx, tau)
CLARFG generates an elementary reflector (Householder matrix).
Definition clarfg.f:104