LAPACK 3.12.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ sdrvst2stg()

 subroutine sdrvst2stg ( integer nsizes, integer, dimension( * ) nn, integer ntypes, logical, dimension( * ) dotype, integer, dimension( 4 ) iseed, real thresh, integer nounit, real, dimension( lda, * ) a, integer lda, real, dimension( * ) d1, real, dimension( * ) d2, real, dimension( * ) d3, real, dimension( * ) d4, real, dimension( * ) eveigs, real, dimension( * ) wa1, real, dimension( * ) wa2, real, dimension( * ) wa3, real, dimension( ldu, * ) u, integer ldu, real, dimension( ldu, * ) v, real, dimension( * ) tau, real, dimension( ldu, * ) z, real, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, real, dimension( * ) result, integer info )

SDRVST2STG

Purpose:
```      SDRVST2STG  checks the symmetric eigenvalue problem drivers.

SSTEV computes all eigenvalues and, optionally,
eigenvectors of a real symmetric tridiagonal matrix.

SSTEVX computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric tridiagonal matrix.

SSTEVR computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric tridiagonal matrix
using the Relatively Robust Representation where it can.

SSYEV computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix.

SSYEVX computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix.

SSYEVR computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix
using the Relatively Robust Representation where it can.

SSPEV computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix in packed
storage.

SSPEVX computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix in packed
storage.

SSBEV computes all eigenvalues and, optionally,
eigenvectors of a real symmetric band matrix.

SSBEVX computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric band matrix.

SSYEVD computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix using
a divide and conquer algorithm.

SSPEVD computes all eigenvalues and, optionally,
eigenvectors of a real symmetric matrix in packed
storage, using a divide and conquer algorithm.

SSBEVD computes all eigenvalues and, optionally,
eigenvectors of a real symmetric band matrix,
using a divide and conquer algorithm.

When SDRVST2STG is called, a number of matrix "sizes" ("n's") and a
number of matrix "types" are specified.  For each size ("n")
and each type of matrix, one matrix will be generated and used
to test the appropriate drivers.  For each matrix and each
driver routine called, the following tests will be performed:

(1)     | A - Z D Z' | / ( |A| n ulp )

(2)     | I - Z Z' | / ( n ulp )

(3)     | D1 - D2 | / ( |D1| ulp )

where Z is the matrix of eigenvectors returned when the
eigenvector option is given and D1 and D2 are the eigenvalues
returned with and without the eigenvector option.

The "sizes" are specified by an array NN(1:NSIZES); the value of
each element NN(j) specifies one size.
The "types" are specified by a logical array DOTYPE( 1:NTYPES );
if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
Currently, the list of possible types is:

(1)  The zero matrix.
(2)  The identity matrix.

(3)  A diagonal matrix with evenly spaced eigenvalues
1, ..., ULP  and random signs.
(ULP = (first number larger than 1) - 1 )
(4)  A diagonal matrix with geometrically spaced eigenvalues
1, ..., ULP  and random signs.
(5)  A diagonal matrix with "clustered" eigenvalues
1, ULP, ..., ULP and random signs.

(6)  Same as (4), but multiplied by SQRT( overflow threshold )
(7)  Same as (4), but multiplied by SQRT( underflow threshold )

(8)  A matrix of the form  U' D U, where U is orthogonal and
D has evenly spaced entries 1, ..., ULP with random signs
on the diagonal.

(9)  A matrix of the form  U' D U, where U is orthogonal and
D has geometrically spaced entries 1, ..., ULP with random
signs on the diagonal.

(10) A matrix of the form  U' D U, where U is orthogonal and
D has "clustered" entries 1, ULP,..., ULP with random
signs on the diagonal.

(11) Same as (8), but multiplied by SQRT( overflow threshold )
(12) Same as (8), but multiplied by SQRT( underflow threshold )

(13) Symmetric matrix with random entries chosen from (-1,1).
(14) Same as (13), but multiplied by SQRT( overflow threshold )
(15) Same as (13), but multiplied by SQRT( underflow threshold )
(16) A band matrix with half bandwidth randomly chosen between
0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
with random signs.
(17) Same as (16), but multiplied by SQRT( overflow threshold )
(18) Same as (16), but multiplied by SQRT( underflow threshold )```
```  NSIZES  INTEGER
The number of sizes of matrices to use.  If it is zero,
SDRVST2STG does nothing.  It must be at least zero.
Not modified.

NN      INTEGER array, dimension (NSIZES)
An array containing the sizes to be used for the matrices.
Zero values will be skipped.  The values must be at least
zero.
Not modified.

NTYPES  INTEGER
The number of elements in DOTYPE.   If it is zero, SDRVST2STG
does nothing.  It must be at least zero.  If it is MAXTYP+1
and NSIZES is 1, then an additional type, MAXTYP+1 is
defined, which is to use whatever matrix is in A.  This
is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
DOTYPE(MAXTYP+1) is .TRUE. .
Not modified.

DOTYPE  LOGICAL array, dimension (NTYPES)
If DOTYPE(j) is .TRUE., then for each size in NN a
matrix of that size and of type j will be generated.
If NTYPES is smaller than the maximum number of types
defined (PARAMETER MAXTYP), then types NTYPES+1 through
MAXTYP will not be generated.  If NTYPES is larger
than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
will be ignored.
Not modified.

ISEED   INTEGER array, dimension (4)
On entry ISEED specifies the seed of the random number
generator. The array elements should be between 0 and 4095;
if not they will be reduced mod 4096.  Also, ISEED(4) must
be odd.  The random number generator uses a linear
congruential sequence limited to small integers, and so
should produce machine independent random numbers. The
values of ISEED are changed on exit, and can be used in the
next call to SDRVST2STG to continue the same random number
sequence.
Modified.

THRESH  REAL
A test will count as "failed" if the "error", computed as
described above, exceeds THRESH.  Note that the error
is scaled to be O(1), so THRESH should be a reasonably
small multiple of 1, e.g., 10 or 100.  In particular,
it should not depend on the precision (single vs. double)
or the size of the matrix.  It must be at least zero.
Not modified.

NOUNIT  INTEGER
The FORTRAN unit number for printing out error messages
(e.g., if a routine returns IINFO not equal to 0.)
Not modified.

A       REAL             array, dimension (LDA , max(NN))
Used to hold the matrix whose eigenvalues are to be
computed.  On exit, A contains the last matrix actually
used.
Modified.

LDA     INTEGER
The leading dimension of A.  It must be at
least 1 and at least max( NN ).
Not modified.

D1      REAL             array, dimension (max(NN))
The eigenvalues of A, as computed by SSTEQR simultaneously
with Z.  On exit, the eigenvalues in D1 correspond with the
matrix in A.
Modified.

D2      REAL             array, dimension (max(NN))
The eigenvalues of A, as computed by SSTEQR if Z is not
computed.  On exit, the eigenvalues in D2 correspond with
the matrix in A.
Modified.

D3      REAL             array, dimension (max(NN))
The eigenvalues of A, as computed by SSTERF.  On exit, the
eigenvalues in D3 correspond with the matrix in A.
Modified.

D4      REAL             array, dimension

EVEIGS  REAL array, dimension (max(NN))
The eigenvalues as computed by SSTEV('N', ... )
(I reserve the right to change this to the output of
whichever algorithm computes the most accurate eigenvalues).

WA1     REAL array, dimension

WA2     REAL array, dimension

WA3     REAL array, dimension

U       REAL             array, dimension (LDU, max(NN))
The orthogonal matrix computed by SSYTRD + SORGTR.
Modified.

LDU     INTEGER
The leading dimension of U, Z, and V.  It must be at
least 1 and at least max( NN ).
Not modified.

V       REAL             array, dimension (LDU, max(NN))
The Housholder vectors computed by SSYTRD in reducing A to
tridiagonal form.
Modified.

TAU     REAL array, dimension (max(NN))
The Householder factors computed by SSYTRD in reducing A
to tridiagonal form.
Modified.

Z       REAL             array, dimension (LDU, max(NN))
The orthogonal matrix of eigenvectors computed by SSTEQR,
SPTEQR, and SSTEIN.
Modified.

WORK    REAL array, dimension (LWORK)
Workspace.
Modified.

LWORK   INTEGER
The number of entries in WORK.  This must be at least
1 + 4 * Nmax + 2 * Nmax * lg Nmax + 4 * Nmax**2
where Nmax = max( NN(j), 2 ) and lg = log base 2.
Not modified.

IWORK   INTEGER array,
dimension (6 + 6*Nmax + 5 * Nmax * lg Nmax )
where Nmax = max( NN(j), 2 ) and lg = log base 2.
Workspace.
Modified.

RESULT  REAL array, dimension (105)
The values computed by the tests described above.
The values are currently limited to 1/ulp, to avoid
overflow.
Modified.

INFO    INTEGER
If 0, then everything ran OK.
-1: NSIZES < 0
-2: Some NN(j) < 0
-3: NTYPES < 0
-5: THRESH < 0
-9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
-16: LDU < 1 or LDU < NMAX.
-21: LWORK too small.
If  SLATMR, SLATMS, SSYTRD, SORGTR, SSTEQR, SSTERF,
or SORMTR returns an error code, the
absolute value of it is returned.
Modified.

-----------------------------------------------------------------------

Some Local Variables and Parameters:
---- ----- --------- --- ----------
ZERO, ONE       Real 0 and 1.
MAXTYP          The number of types defined.
NTEST           The number of tests performed, or which can
be performed so far, for the current matrix.
NTESTT          The total number of tests performed so far.
NMAX            Largest value in NN.
NMATS           The number of matrices generated so far.
NERRS           The number of tests which have exceeded THRESH
so far (computed by SLAFTS).
COND, IMODE     Values to be passed to the matrix generators.
ANORM           Norm of A; passed to matrix generators.

OVFL, UNFL      Overflow and underflow thresholds.
ULP, ULPINV     Finest relative precision and its inverse.
RTOVFL, RTUNFL  Square roots of the previous 2 values.
The following four arrays decode JTYPE:
KTYPE(j)        The general type (1-10) for type "j".
KMODE(j)        The MODE value to be passed to the matrix
generator for type "j".
KMAGN(j)        The order of magnitude ( O(1),
O(overflow^(1/2) ), O(underflow^(1/2) )

The tests performed are:                 Routine tested
1= | A - U S U' | / ( |A| n ulp )         SSTEV('V', ... )
2= | I - U U' | / ( n ulp )               SSTEV('V', ... )
3= |D(with Z) - D(w/o Z)| / (|D| ulp)     SSTEV('N', ... )
4= | A - U S U' | / ( |A| n ulp )         SSTEVX('V','A', ... )
5= | I - U U' | / ( n ulp )               SSTEVX('V','A', ... )
6= |D(with Z) - EVEIGS| / (|D| ulp)       SSTEVX('N','A', ... )
7= | A - U S U' | / ( |A| n ulp )         SSTEVR('V','A', ... )
8= | I - U U' | / ( n ulp )               SSTEVR('V','A', ... )
9= |D(with Z) - EVEIGS| / (|D| ulp)       SSTEVR('N','A', ... )
10= | A - U S U' | / ( |A| n ulp )        SSTEVX('V','I', ... )
11= | I - U U' | / ( n ulp )              SSTEVX('V','I', ... )
12= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSTEVX('N','I', ... )
13= | A - U S U' | / ( |A| n ulp )        SSTEVX('V','V', ... )
14= | I - U U' | / ( n ulp )              SSTEVX('V','V', ... )
15= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSTEVX('N','V', ... )
16= | A - U S U' | / ( |A| n ulp )        SSTEVD('V', ... )
17= | I - U U' | / ( n ulp )              SSTEVD('V', ... )
18= |D(with Z) - EVEIGS| / (|D| ulp)      SSTEVD('N', ... )
19= | A - U S U' | / ( |A| n ulp )        SSTEVR('V','I', ... )
20= | I - U U' | / ( n ulp )              SSTEVR('V','I', ... )
21= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSTEVR('N','I', ... )
22= | A - U S U' | / ( |A| n ulp )        SSTEVR('V','V', ... )
23= | I - U U' | / ( n ulp )              SSTEVR('V','V', ... )
24= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSTEVR('N','V', ... )

25= | A - U S U' | / ( |A| n ulp )        SSYEV('L','V', ... )
26= | I - U U' | / ( n ulp )              SSYEV('L','V', ... )
27= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEV_2STAGE('L','N', ... )
28= | A - U S U' | / ( |A| n ulp )        SSYEVX('L','V','A', ... )
29= | I - U U' | / ( n ulp )              SSYEVX('L','V','A', ... )
30= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVX_2STAGE('L','N','A', ... )
31= | A - U S U' | / ( |A| n ulp )        SSYEVX('L','V','I', ... )
32= | I - U U' | / ( n ulp )              SSYEVX('L','V','I', ... )
33= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVX_2STAGE('L','N','I', ... )
34= | A - U S U' | / ( |A| n ulp )        SSYEVX('L','V','V', ... )
35= | I - U U' | / ( n ulp )              SSYEVX('L','V','V', ... )
36= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVX_2STAGE('L','N','V', ... )
37= | A - U S U' | / ( |A| n ulp )        SSPEV('L','V', ... )
38= | I - U U' | / ( n ulp )              SSPEV('L','V', ... )
39= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEV('L','N', ... )
40= | A - U S U' | / ( |A| n ulp )        SSPEVX('L','V','A', ... )
41= | I - U U' | / ( n ulp )              SSPEVX('L','V','A', ... )
42= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVX('L','N','A', ... )
43= | A - U S U' | / ( |A| n ulp )        SSPEVX('L','V','I', ... )
44= | I - U U' | / ( n ulp )              SSPEVX('L','V','I', ... )
45= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVX('L','N','I', ... )
46= | A - U S U' | / ( |A| n ulp )        SSPEVX('L','V','V', ... )
47= | I - U U' | / ( n ulp )              SSPEVX('L','V','V', ... )
48= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVX('L','N','V', ... )
49= | A - U S U' | / ( |A| n ulp )        SSBEV('L','V', ... )
50= | I - U U' | / ( n ulp )              SSBEV('L','V', ... )
51= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEV_2STAGE('L','N', ... )
52= | A - U S U' | / ( |A| n ulp )        SSBEVX('L','V','A', ... )
53= | I - U U' | / ( n ulp )              SSBEVX('L','V','A', ... )
54= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVX_2STAGE('L','N','A', ... )
55= | A - U S U' | / ( |A| n ulp )        SSBEVX('L','V','I', ... )
56= | I - U U' | / ( n ulp )              SSBEVX('L','V','I', ... )
57= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVX_2STAGE('L','N','I', ... )
58= | A - U S U' | / ( |A| n ulp )        SSBEVX('L','V','V', ... )
59= | I - U U' | / ( n ulp )              SSBEVX('L','V','V', ... )
60= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVX_2STAGE('L','N','V', ... )
61= | A - U S U' | / ( |A| n ulp )        SSYEVD('L','V', ... )
62= | I - U U' | / ( n ulp )              SSYEVD('L','V', ... )
63= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVD_2STAGE('L','N', ... )
64= | A - U S U' | / ( |A| n ulp )        SSPEVD('L','V', ... )
65= | I - U U' | / ( n ulp )              SSPEVD('L','V', ... )
66= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVD('L','N', ... )
67= | A - U S U' | / ( |A| n ulp )        SSBEVD('L','V', ... )
68= | I - U U' | / ( n ulp )              SSBEVD('L','V', ... )
69= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVD_2STAGE('L','N', ... )
70= | A - U S U' | / ( |A| n ulp )        SSYEVR('L','V','A', ... )
71= | I - U U' | / ( n ulp )              SSYEVR('L','V','A', ... )
72= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVR_2STAGE('L','N','A', ... )
73= | A - U S U' | / ( |A| n ulp )        SSYEVR('L','V','I', ... )
74= | I - U U' | / ( n ulp )              SSYEVR('L','V','I', ... )
75= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVR_2STAGE('L','N','I', ... )
76= | A - U S U' | / ( |A| n ulp )        SSYEVR('L','V','V', ... )
77= | I - U U' | / ( n ulp )              SSYEVR('L','V','V', ... )
78= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSYEVR_2STAGE('L','N','V', ... )

Tests 25 through 78 are repeated (as tests 79 through 132)
with UPLO='U'

79= | A - U S U' | / ( |A| n ulp )        SSPEVR('L','V','A', ... )
80= | I - U U' | / ( n ulp )              SSPEVR('L','V','A', ... )
81= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVR('L','N','A', ... )
82= | A - U S U' | / ( |A| n ulp )        SSPEVR('L','V','I', ... )
83= | I - U U' | / ( n ulp )              SSPEVR('L','V','I', ... )
84= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVR('L','N','I', ... )
85= | A - U S U' | / ( |A| n ulp )        SSPEVR('L','V','V', ... )
86= | I - U U' | / ( n ulp )              SSPEVR('L','V','V', ... )
87= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSPEVR('L','N','V', ... )
88= | A - U S U' | / ( |A| n ulp )        SSBEVR('L','V','A', ... )
89= | I - U U' | / ( n ulp )              SSBEVR('L','V','A', ... )
90= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVR('L','N','A', ... )
91= | A - U S U' | / ( |A| n ulp )        SSBEVR('L','V','I', ... )
92= | I - U U' | / ( n ulp )              SSBEVR('L','V','I', ... )
93= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVR('L','N','I', ... )
94= | A - U S U' | / ( |A| n ulp )        SSBEVR('L','V','V', ... )
95= | I - U U' | / ( n ulp )              SSBEVR('L','V','V', ... )
96= |D(with Z) - D(w/o Z)| / (|D| ulp)    SSBEVR('L','N','V', ... )```

Definition at line 449 of file sdrvst2stg.f.

453*
454* -- LAPACK test routine --
455* -- LAPACK is a software package provided by Univ. of Tennessee, --
456* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
457*
458* .. Scalar Arguments ..
459 INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
460 \$ NTYPES
461 REAL THRESH
462* ..
463* .. Array Arguments ..
464 LOGICAL DOTYPE( * )
465 INTEGER ISEED( 4 ), IWORK( * ), NN( * )
466 REAL A( LDA, * ), D1( * ), D2( * ), D3( * ),
467 \$ D4( * ), EVEIGS( * ), RESULT( * ), TAU( * ),
468 \$ U( LDU, * ), V( LDU, * ), WA1( * ), WA2( * ),
469 \$ WA3( * ), WORK( * ), Z( LDU, * )
470* ..
471*
472* =====================================================================
473*
474* .. Parameters ..
475 REAL ZERO, ONE, TWO, TEN
476 parameter( zero = 0.0e0, one = 1.0e0, two = 2.0e0,
477 \$ ten = 10.0e0 )
478 REAL HALF
479 parameter( half = 0.5e+0 )
480 INTEGER MAXTYP
481 parameter( maxtyp = 18 )
482* ..
483* .. Local Scalars ..
485 CHARACTER UPLO
486 INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDX, IROW,
487 \$ ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL,
488 \$ JSIZE, JTYPE, KD, LGN, LIWEDC, LWEDC, M, M2,
489 \$ M3, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
490 \$ NTESTT
491 REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
492 \$ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL,
493 \$ VL, VU
494* ..
495* .. Local Arrays ..
496 INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
497 \$ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
498 \$ KTYPE( MAXTYP )
499* ..
500* .. External Functions ..
501 REAL SLAMCH, SLARND, SSXT1
502 EXTERNAL slamch, slarnd, ssxt1
503* ..
504* .. External Subroutines ..
505 EXTERNAL alasvm, slacpy, slafts, slaset, slatmr,
513* ..
514* .. Scalars in Common ..
515 CHARACTER*32 SRNAMT
516* ..
517* .. Common blocks ..
518 COMMON / srnamc / srnamt
519* ..
520* .. Intrinsic Functions ..
521 INTRINSIC abs, real, int, log, max, min, sqrt
522* ..
523* .. Data statements ..
524 DATA ktype / 1, 2, 5*4, 5*5, 3*8, 3*9 /
525 DATA kmagn / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
526 \$ 2, 3, 1, 2, 3 /
527 DATA kmode / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
528 \$ 0, 0, 4, 4, 4 /
529* ..
530* .. Executable Statements ..
531*
532* Keep ftrnchek happy
533*
534 vl = zero
535 vu = zero
536*
537* 1) Check for errors
538*
539 ntestt = 0
540 info = 0
541*
543 nmax = 1
544 DO 10 j = 1, nsizes
545 nmax = max( nmax, nn( j ) )
546 IF( nn( j ).LT.0 )
548 10 CONTINUE
549*
550* Check for errors
551*
552 IF( nsizes.LT.0 ) THEN
553 info = -1
554 ELSE IF( badnn ) THEN
555 info = -2
556 ELSE IF( ntypes.LT.0 ) THEN
557 info = -3
558 ELSE IF( lda.LT.nmax ) THEN
559 info = -9
560 ELSE IF( ldu.LT.nmax ) THEN
561 info = -16
562 ELSE IF( 2*max( 2, nmax )**2.GT.lwork ) THEN
563 info = -21
564 END IF
565*
566 IF( info.NE.0 ) THEN
567 CALL xerbla( 'SDRVST2STG', -info )
568 RETURN
569 END IF
570*
571* Quick return if nothing to do
572*
573 IF( nsizes.EQ.0 .OR. ntypes.EQ.0 )
574 \$ RETURN
575*
576* More Important constants
577*
578 unfl = slamch( 'Safe minimum' )
579 ovfl = slamch( 'Overflow' )
580 ulp = slamch( 'Epsilon' )*slamch( 'Base' )
581 ulpinv = one / ulp
582 rtunfl = sqrt( unfl )
583 rtovfl = sqrt( ovfl )
584*
585* Loop over sizes, types
586*
587 DO 20 i = 1, 4
588 iseed2( i ) = iseed( i )
589 iseed3( i ) = iseed( i )
590 20 CONTINUE
591*
592 nerrs = 0
593 nmats = 0
594*
595*
596 DO 1740 jsize = 1, nsizes
597 n = nn( jsize )
598 IF( n.GT.0 ) THEN
599 lgn = int( log( real( n ) ) / log( two ) )
600 IF( 2**lgn.LT.n )
601 \$ lgn = lgn + 1
602 IF( 2**lgn.LT.n )
603 \$ lgn = lgn + 1
604 lwedc = 1 + 4*n + 2*n*lgn + 4*n**2
605c LIWEDC = 6 + 6*N + 5*N*LGN
606 liwedc = 3 + 5*n
607 ELSE
608 lwedc = 9
609c LIWEDC = 12
610 liwedc = 8
611 END IF
612 aninv = one / real( max( 1, n ) )
613*
614 IF( nsizes.NE.1 ) THEN
615 mtypes = min( maxtyp, ntypes )
616 ELSE
617 mtypes = min( maxtyp+1, ntypes )
618 END IF
619*
620 DO 1730 jtype = 1, mtypes
621*
622 IF( .NOT.dotype( jtype ) )
623 \$ GO TO 1730
624 nmats = nmats + 1
625 ntest = 0
626*
627 DO 30 j = 1, 4
628 ioldsd( j ) = iseed( j )
629 30 CONTINUE
630*
631* 2) Compute "A"
632*
633* Control parameters:
634*
635* KMAGN KMODE KTYPE
636* =1 O(1) clustered 1 zero
637* =2 large clustered 2 identity
638* =3 small exponential (none)
639* =4 arithmetic diagonal, (w/ eigenvalues)
640* =5 random log symmetric, w/ eigenvalues
641* =6 random (none)
642* =7 random diagonal
643* =8 random symmetric
644* =9 band symmetric, w/ eigenvalues
645*
646 IF( mtypes.GT.maxtyp )
647 \$ GO TO 110
648*
649 itype = ktype( jtype )
650 imode = kmode( jtype )
651*
652* Compute norm
653*
654 GO TO ( 40, 50, 60 )kmagn( jtype )
655*
656 40 CONTINUE
657 anorm = one
658 GO TO 70
659*
660 50 CONTINUE
661 anorm = ( rtovfl*ulp )*aninv
662 GO TO 70
663*
664 60 CONTINUE
665 anorm = rtunfl*n*ulpinv
666 GO TO 70
667*
668 70 CONTINUE
669*
670 CALL slaset( 'Full', lda, n, zero, zero, a, lda )
671 iinfo = 0
672 cond = ulpinv
673*
674* Special Matrices -- Identity & Jordan block
675*
676* Zero
677*
678 IF( itype.EQ.1 ) THEN
679 iinfo = 0
680*
681 ELSE IF( itype.EQ.2 ) THEN
682*
683* Identity
684*
685 DO 80 jcol = 1, n
686 a( jcol, jcol ) = anorm
687 80 CONTINUE
688*
689 ELSE IF( itype.EQ.4 ) THEN
690*
691* Diagonal Matrix, [Eigen]values Specified
692*
693 CALL slatms( n, n, 'S', iseed, 'S', work, imode, cond,
694 \$ anorm, 0, 0, 'N', a, lda, work( n+1 ),
695 \$ iinfo )
696*
697 ELSE IF( itype.EQ.5 ) THEN
698*
699* Symmetric, eigenvalues specified
700*
701 CALL slatms( n, n, 'S', iseed, 'S', work, imode, cond,
702 \$ anorm, n, n, 'N', a, lda, work( n+1 ),
703 \$ iinfo )
704*
705 ELSE IF( itype.EQ.7 ) THEN
706*
707* Diagonal, random eigenvalues
708*
709 idumma( 1 ) = 1
710 CALL slatmr( n, n, 'S', iseed, 'S', work, 6, one, one,
711 \$ 'T', 'N', work( n+1 ), 1, one,
712 \$ work( 2*n+1 ), 1, one, 'N', idumma, 0, 0,
713 \$ zero, anorm, 'NO', a, lda, iwork, iinfo )
714*
715 ELSE IF( itype.EQ.8 ) THEN
716*
717* Symmetric, random eigenvalues
718*
719 idumma( 1 ) = 1
720 CALL slatmr( n, n, 'S', iseed, 'S', work, 6, one, one,
721 \$ 'T', 'N', work( n+1 ), 1, one,
722 \$ work( 2*n+1 ), 1, one, 'N', idumma, n, n,
723 \$ zero, anorm, 'NO', a, lda, iwork, iinfo )
724*
725 ELSE IF( itype.EQ.9 ) THEN
726*
727* Symmetric banded, eigenvalues specified
728*
729 ihbw = int( ( n-1 )*slarnd( 1, iseed3 ) )
730 CALL slatms( n, n, 'S', iseed, 'S', work, imode, cond,
731 \$ anorm, ihbw, ihbw, 'Z', u, ldu, work( n+1 ),
732 \$ iinfo )
733*
734* Store as dense matrix for most routines.
735*
736 CALL slaset( 'Full', lda, n, zero, zero, a, lda )
737 DO 100 idiag = -ihbw, ihbw
738 irow = ihbw - idiag + 1
739 j1 = max( 1, idiag+1 )
740 j2 = min( n, n+idiag )
741 DO 90 j = j1, j2
742 i = j - idiag
743 a( i, j ) = u( irow, j )
744 90 CONTINUE
745 100 CONTINUE
746 ELSE
747 iinfo = 1
748 END IF
749*
750 IF( iinfo.NE.0 ) THEN
751 WRITE( nounit, fmt = 9999 )'Generator', iinfo, n, jtype,
752 \$ ioldsd
753 info = abs( iinfo )
754 RETURN
755 END IF
756*
757 110 CONTINUE
758*
759 abstol = unfl + unfl
760 IF( n.LE.1 ) THEN
761 il = 1
762 iu = n
763 ELSE
764 il = 1 + int( ( n-1 )*slarnd( 1, iseed2 ) )
765 iu = 1 + int( ( n-1 )*slarnd( 1, iseed2 ) )
766 IF( il.GT.iu ) THEN
767 itemp = il
768 il = iu
769 iu = itemp
770 END IF
771 END IF
772*
773* 3) If matrix is tridiagonal, call SSTEV and SSTEVX.
774*
775 IF( jtype.LE.7 ) THEN
776 ntest = 1
777 DO 120 i = 1, n
778 d1( i ) = real( a( i, i ) )
779 120 CONTINUE
780 DO 130 i = 1, n - 1
781 d2( i ) = real( a( i+1, i ) )
782 130 CONTINUE
783 srnamt = 'SSTEV'
784 CALL sstev( 'V', n, d1, d2, z, ldu, work, iinfo )
785 IF( iinfo.NE.0 ) THEN
786 WRITE( nounit, fmt = 9999 )'SSTEV(V)', iinfo, n,
787 \$ jtype, ioldsd
788 info = abs( iinfo )
789 IF( iinfo.LT.0 ) THEN
790 RETURN
791 ELSE
792 result( 1 ) = ulpinv
793 result( 2 ) = ulpinv
794 result( 3 ) = ulpinv
795 GO TO 180
796 END IF
797 END IF
798*
799* Do tests 1 and 2.
800*
801 DO 140 i = 1, n
802 d3( i ) = real( a( i, i ) )
803 140 CONTINUE
804 DO 150 i = 1, n - 1
805 d4( i ) = real( a( i+1, i ) )
806 150 CONTINUE
807 CALL sstt21( n, 0, d3, d4, d1, d2, z, ldu, work,
808 \$ result( 1 ) )
809*
810 ntest = 3
811 DO 160 i = 1, n - 1
812 d4( i ) = real( a( i+1, i ) )
813 160 CONTINUE
814 srnamt = 'SSTEV'
815 CALL sstev( 'N', n, d3, d4, z, ldu, work, iinfo )
816 IF( iinfo.NE.0 ) THEN
817 WRITE( nounit, fmt = 9999 )'SSTEV(N)', iinfo, n,
818 \$ jtype, ioldsd
819 info = abs( iinfo )
820 IF( iinfo.LT.0 ) THEN
821 RETURN
822 ELSE
823 result( 3 ) = ulpinv
824 GO TO 180
825 END IF
826 END IF
827*
828* Do test 3.
829*
830 temp1 = zero
831 temp2 = zero
832 DO 170 j = 1, n
833 temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
834 temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
835 170 CONTINUE
836 result( 3 ) = temp2 / max( unfl,
837 \$ ulp*max( temp1, temp2 ) )
838*
839 180 CONTINUE
840*
841 ntest = 4
842 DO 190 i = 1, n
843 eveigs( i ) = d3( i )
844 d1( i ) = real( a( i, i ) )
845 190 CONTINUE
846 DO 200 i = 1, n - 1
847 d2( i ) = real( a( i+1, i ) )
848 200 CONTINUE
849 srnamt = 'SSTEVX'
850 CALL sstevx( 'V', 'A', n, d1, d2, vl, vu, il, iu, abstol,
851 \$ m, wa1, z, ldu, work, iwork, iwork( 5*n+1 ),
852 \$ iinfo )
853 IF( iinfo.NE.0 ) THEN
854 WRITE( nounit, fmt = 9999 )'SSTEVX(V,A)', iinfo, n,
855 \$ jtype, ioldsd
856 info = abs( iinfo )
857 IF( iinfo.LT.0 ) THEN
858 RETURN
859 ELSE
860 result( 4 ) = ulpinv
861 result( 5 ) = ulpinv
862 result( 6 ) = ulpinv
863 GO TO 250
864 END IF
865 END IF
866 IF( n.GT.0 ) THEN
867 temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
868 ELSE
869 temp3 = zero
870 END IF
871*
872* Do tests 4 and 5.
873*
874 DO 210 i = 1, n
875 d3( i ) = real( a( i, i ) )
876 210 CONTINUE
877 DO 220 i = 1, n - 1
878 d4( i ) = real( a( i+1, i ) )
879 220 CONTINUE
880 CALL sstt21( n, 0, d3, d4, wa1, d2, z, ldu, work,
881 \$ result( 4 ) )
882*
883 ntest = 6
884 DO 230 i = 1, n - 1
885 d4( i ) = real( a( i+1, i ) )
886 230 CONTINUE
887 srnamt = 'SSTEVX'
888 CALL sstevx( 'N', 'A', n, d3, d4, vl, vu, il, iu, abstol,
889 \$ m2, wa2, z, ldu, work, iwork,
890 \$ iwork( 5*n+1 ), iinfo )
891 IF( iinfo.NE.0 ) THEN
892 WRITE( nounit, fmt = 9999 )'SSTEVX(N,A)', iinfo, n,
893 \$ jtype, ioldsd
894 info = abs( iinfo )
895 IF( iinfo.LT.0 ) THEN
896 RETURN
897 ELSE
898 result( 6 ) = ulpinv
899 GO TO 250
900 END IF
901 END IF
902*
903* Do test 6.
904*
905 temp1 = zero
906 temp2 = zero
907 DO 240 j = 1, n
908 temp1 = max( temp1, abs( wa2( j ) ),
909 \$ abs( eveigs( j ) ) )
910 temp2 = max( temp2, abs( wa2( j )-eveigs( j ) ) )
911 240 CONTINUE
912 result( 6 ) = temp2 / max( unfl,
913 \$ ulp*max( temp1, temp2 ) )
914*
915 250 CONTINUE
916*
917 ntest = 7
918 DO 260 i = 1, n
919 d1( i ) = real( a( i, i ) )
920 260 CONTINUE
921 DO 270 i = 1, n - 1
922 d2( i ) = real( a( i+1, i ) )
923 270 CONTINUE
924 srnamt = 'SSTEVR'
925 CALL sstevr( 'V', 'A', n, d1, d2, vl, vu, il, iu, abstol,
926 \$ m, wa1, z, ldu, iwork, work, lwork,
927 \$ iwork(2*n+1), liwork-2*n, iinfo )
928 IF( iinfo.NE.0 ) THEN
929 WRITE( nounit, fmt = 9999 )'SSTEVR(V,A)', iinfo, n,
930 \$ jtype, ioldsd
931 info = abs( iinfo )
932 IF( iinfo.LT.0 ) THEN
933 RETURN
934 ELSE
935 result( 7 ) = ulpinv
936 result( 8 ) = ulpinv
937 GO TO 320
938 END IF
939 END IF
940 IF( n.GT.0 ) THEN
941 temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
942 ELSE
943 temp3 = zero
944 END IF
945*
946* Do tests 7 and 8.
947*
948 DO 280 i = 1, n
949 d3( i ) = real( a( i, i ) )
950 280 CONTINUE
951 DO 290 i = 1, n - 1
952 d4( i ) = real( a( i+1, i ) )
953 290 CONTINUE
954 CALL sstt21( n, 0, d3, d4, wa1, d2, z, ldu, work,
955 \$ result( 7 ) )
956*
957 ntest = 9
958 DO 300 i = 1, n - 1
959 d4( i ) = real( a( i+1, i ) )
960 300 CONTINUE
961 srnamt = 'SSTEVR'
962 CALL sstevr( 'N', 'A', n, d3, d4, vl, vu, il, iu, abstol,
963 \$ m2, wa2, z, ldu, iwork, work, lwork,
964 \$ iwork(2*n+1), liwork-2*n, iinfo )
965 IF( iinfo.NE.0 ) THEN
966 WRITE( nounit, fmt = 9999 )'SSTEVR(N,A)', iinfo, n,
967 \$ jtype, ioldsd
968 info = abs( iinfo )
969 IF( iinfo.LT.0 ) THEN
970 RETURN
971 ELSE
972 result( 9 ) = ulpinv
973 GO TO 320
974 END IF
975 END IF
976*
977* Do test 9.
978*
979 temp1 = zero
980 temp2 = zero
981 DO 310 j = 1, n
982 temp1 = max( temp1, abs( wa2( j ) ),
983 \$ abs( eveigs( j ) ) )
984 temp2 = max( temp2, abs( wa2( j )-eveigs( j ) ) )
985 310 CONTINUE
986 result( 9 ) = temp2 / max( unfl,
987 \$ ulp*max( temp1, temp2 ) )
988*
989 320 CONTINUE
990*
991*
992 ntest = 10
993 DO 330 i = 1, n
994 d1( i ) = real( a( i, i ) )
995 330 CONTINUE
996 DO 340 i = 1, n - 1
997 d2( i ) = real( a( i+1, i ) )
998 340 CONTINUE
999 srnamt = 'SSTEVX'
1000 CALL sstevx( 'V', 'I', n, d1, d2, vl, vu, il, iu, abstol,
1001 \$ m2, wa2, z, ldu, work, iwork,
1002 \$ iwork( 5*n+1 ), iinfo )
1003 IF( iinfo.NE.0 ) THEN
1004 WRITE( nounit, fmt = 9999 )'SSTEVX(V,I)', iinfo, n,
1005 \$ jtype, ioldsd
1006 info = abs( iinfo )
1007 IF( iinfo.LT.0 ) THEN
1008 RETURN
1009 ELSE
1010 result( 10 ) = ulpinv
1011 result( 11 ) = ulpinv
1012 result( 12 ) = ulpinv
1013 GO TO 380
1014 END IF
1015 END IF
1016*
1017* Do tests 10 and 11.
1018*
1019 DO 350 i = 1, n
1020 d3( i ) = real( a( i, i ) )
1021 350 CONTINUE
1022 DO 360 i = 1, n - 1
1023 d4( i ) = real( a( i+1, i ) )
1024 360 CONTINUE
1025 CALL sstt22( n, m2, 0, d3, d4, wa2, d2, z, ldu, work,
1026 \$ max( 1, m2 ), result( 10 ) )
1027*
1028*
1029 ntest = 12
1030 DO 370 i = 1, n - 1
1031 d4( i ) = real( a( i+1, i ) )
1032 370 CONTINUE
1033 srnamt = 'SSTEVX'
1034 CALL sstevx( 'N', 'I', n, d3, d4, vl, vu, il, iu, abstol,
1035 \$ m3, wa3, z, ldu, work, iwork,
1036 \$ iwork( 5*n+1 ), iinfo )
1037 IF( iinfo.NE.0 ) THEN
1038 WRITE( nounit, fmt = 9999 )'SSTEVX(N,I)', iinfo, n,
1039 \$ jtype, ioldsd
1040 info = abs( iinfo )
1041 IF( iinfo.LT.0 ) THEN
1042 RETURN
1043 ELSE
1044 result( 12 ) = ulpinv
1045 GO TO 380
1046 END IF
1047 END IF
1048*
1049* Do test 12.
1050*
1051 temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1052 temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1053 result( 12 ) = ( temp1+temp2 ) / max( unfl, ulp*temp3 )
1054*
1055 380 CONTINUE
1056*
1057 ntest = 12
1058 IF( n.GT.0 ) THEN
1059 IF( il.NE.1 ) THEN
1060 vl = wa1( il ) - max( half*
1061 \$ ( wa1( il )-wa1( il-1 ) ), ten*ulp*temp3,
1062 \$ ten*rtunfl )
1063 ELSE
1064 vl = wa1( 1 ) - max( half*( wa1( n )-wa1( 1 ) ),
1065 \$ ten*ulp*temp3, ten*rtunfl )
1066 END IF
1067 IF( iu.NE.n ) THEN
1068 vu = wa1( iu ) + max( half*
1069 \$ ( wa1( iu+1 )-wa1( iu ) ), ten*ulp*temp3,
1070 \$ ten*rtunfl )
1071 ELSE
1072 vu = wa1( n ) + max( half*( wa1( n )-wa1( 1 ) ),
1073 \$ ten*ulp*temp3, ten*rtunfl )
1074 END IF
1075 ELSE
1076 vl = zero
1077 vu = one
1078 END IF
1079*
1080 DO 390 i = 1, n
1081 d1( i ) = real( a( i, i ) )
1082 390 CONTINUE
1083 DO 400 i = 1, n - 1
1084 d2( i ) = real( a( i+1, i ) )
1085 400 CONTINUE
1086 srnamt = 'SSTEVX'
1087 CALL sstevx( 'V', 'V', n, d1, d2, vl, vu, il, iu, abstol,
1088 \$ m2, wa2, z, ldu, work, iwork,
1089 \$ iwork( 5*n+1 ), iinfo )
1090 IF( iinfo.NE.0 ) THEN
1091 WRITE( nounit, fmt = 9999 )'SSTEVX(V,V)', iinfo, n,
1092 \$ jtype, ioldsd
1093 info = abs( iinfo )
1094 IF( iinfo.LT.0 ) THEN
1095 RETURN
1096 ELSE
1097 result( 13 ) = ulpinv
1098 result( 14 ) = ulpinv
1099 result( 15 ) = ulpinv
1100 GO TO 440
1101 END IF
1102 END IF
1103*
1104 IF( m2.EQ.0 .AND. n.GT.0 ) THEN
1105 result( 13 ) = ulpinv
1106 result( 14 ) = ulpinv
1107 result( 15 ) = ulpinv
1108 GO TO 440
1109 END IF
1110*
1111* Do tests 13 and 14.
1112*
1113 DO 410 i = 1, n
1114 d3( i ) = real( a( i, i ) )
1115 410 CONTINUE
1116 DO 420 i = 1, n - 1
1117 d4( i ) = real( a( i+1, i ) )
1118 420 CONTINUE
1119 CALL sstt22( n, m2, 0, d3, d4, wa2, d2, z, ldu, work,
1120 \$ max( 1, m2 ), result( 13 ) )
1121*
1122 ntest = 15
1123 DO 430 i = 1, n - 1
1124 d4( i ) = real( a( i+1, i ) )
1125 430 CONTINUE
1126 srnamt = 'SSTEVX'
1127 CALL sstevx( 'N', 'V', n, d3, d4, vl, vu, il, iu, abstol,
1128 \$ m3, wa3, z, ldu, work, iwork,
1129 \$ iwork( 5*n+1 ), iinfo )
1130 IF( iinfo.NE.0 ) THEN
1131 WRITE( nounit, fmt = 9999 )'SSTEVX(N,V)', iinfo, n,
1132 \$ jtype, ioldsd
1133 info = abs( iinfo )
1134 IF( iinfo.LT.0 ) THEN
1135 RETURN
1136 ELSE
1137 result( 15 ) = ulpinv
1138 GO TO 440
1139 END IF
1140 END IF
1141*
1142* Do test 15.
1143*
1144 temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1145 temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1146 result( 15 ) = ( temp1+temp2 ) / max( unfl, temp3*ulp )
1147*
1148 440 CONTINUE
1149*
1150 ntest = 16
1151 DO 450 i = 1, n
1152 d1( i ) = real( a( i, i ) )
1153 450 CONTINUE
1154 DO 460 i = 1, n - 1
1155 d2( i ) = real( a( i+1, i ) )
1156 460 CONTINUE
1157 srnamt = 'SSTEVD'
1158 CALL sstevd( 'V', n, d1, d2, z, ldu, work, lwedc, iwork,
1159 \$ liwedc, iinfo )
1160 IF( iinfo.NE.0 ) THEN
1161 WRITE( nounit, fmt = 9999 )'SSTEVD(V)', iinfo, n,
1162 \$ jtype, ioldsd
1163 info = abs( iinfo )
1164 IF( iinfo.LT.0 ) THEN
1165 RETURN
1166 ELSE
1167 result( 16 ) = ulpinv
1168 result( 17 ) = ulpinv
1169 result( 18 ) = ulpinv
1170 GO TO 510
1171 END IF
1172 END IF
1173*
1174* Do tests 16 and 17.
1175*
1176 DO 470 i = 1, n
1177 d3( i ) = real( a( i, i ) )
1178 470 CONTINUE
1179 DO 480 i = 1, n - 1
1180 d4( i ) = real( a( i+1, i ) )
1181 480 CONTINUE
1182 CALL sstt21( n, 0, d3, d4, d1, d2, z, ldu, work,
1183 \$ result( 16 ) )
1184*
1185 ntest = 18
1186 DO 490 i = 1, n - 1
1187 d4( i ) = real( a( i+1, i ) )
1188 490 CONTINUE
1189 srnamt = 'SSTEVD'
1190 CALL sstevd( 'N', n, d3, d4, z, ldu, work, lwedc, iwork,
1191 \$ liwedc, iinfo )
1192 IF( iinfo.NE.0 ) THEN
1193 WRITE( nounit, fmt = 9999 )'SSTEVD(N)', iinfo, n,
1194 \$ jtype, ioldsd
1195 info = abs( iinfo )
1196 IF( iinfo.LT.0 ) THEN
1197 RETURN
1198 ELSE
1199 result( 18 ) = ulpinv
1200 GO TO 510
1201 END IF
1202 END IF
1203*
1204* Do test 18.
1205*
1206 temp1 = zero
1207 temp2 = zero
1208 DO 500 j = 1, n
1209 temp1 = max( temp1, abs( eveigs( j ) ),
1210 \$ abs( d3( j ) ) )
1211 temp2 = max( temp2, abs( eveigs( j )-d3( j ) ) )
1212 500 CONTINUE
1213 result( 18 ) = temp2 / max( unfl,
1214 \$ ulp*max( temp1, temp2 ) )
1215*
1216 510 CONTINUE
1217*
1218 ntest = 19
1219 DO 520 i = 1, n
1220 d1( i ) = real( a( i, i ) )
1221 520 CONTINUE
1222 DO 530 i = 1, n - 1
1223 d2( i ) = real( a( i+1, i ) )
1224 530 CONTINUE
1225 srnamt = 'SSTEVR'
1226 CALL sstevr( 'V', 'I', n, d1, d2, vl, vu, il, iu, abstol,
1227 \$ m2, wa2, z, ldu, iwork, work, lwork,
1228 \$ iwork(2*n+1), liwork-2*n, iinfo )
1229 IF( iinfo.NE.0 ) THEN
1230 WRITE( nounit, fmt = 9999 )'SSTEVR(V,I)', iinfo, n,
1231 \$ jtype, ioldsd
1232 info = abs( iinfo )
1233 IF( iinfo.LT.0 ) THEN
1234 RETURN
1235 ELSE
1236 result( 19 ) = ulpinv
1237 result( 20 ) = ulpinv
1238 result( 21 ) = ulpinv
1239 GO TO 570
1240 END IF
1241 END IF
1242*
1243* DO tests 19 and 20.
1244*
1245 DO 540 i = 1, n
1246 d3( i ) = real( a( i, i ) )
1247 540 CONTINUE
1248 DO 550 i = 1, n - 1
1249 d4( i ) = real( a( i+1, i ) )
1250 550 CONTINUE
1251 CALL sstt22( n, m2, 0, d3, d4, wa2, d2, z, ldu, work,
1252 \$ max( 1, m2 ), result( 19 ) )
1253*
1254*
1255 ntest = 21
1256 DO 560 i = 1, n - 1
1257 d4( i ) = real( a( i+1, i ) )
1258 560 CONTINUE
1259 srnamt = 'SSTEVR'
1260 CALL sstevr( 'N', 'I', n, d3, d4, vl, vu, il, iu, abstol,
1261 \$ m3, wa3, z, ldu, iwork, work, lwork,
1262 \$ iwork(2*n+1), liwork-2*n, iinfo )
1263 IF( iinfo.NE.0 ) THEN
1264 WRITE( nounit, fmt = 9999 )'SSTEVR(N,I)', iinfo, n,
1265 \$ jtype, ioldsd
1266 info = abs( iinfo )
1267 IF( iinfo.LT.0 ) THEN
1268 RETURN
1269 ELSE
1270 result( 21 ) = ulpinv
1271 GO TO 570
1272 END IF
1273 END IF
1274*
1275* Do test 21.
1276*
1277 temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1278 temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1279 result( 21 ) = ( temp1+temp2 ) / max( unfl, ulp*temp3 )
1280*
1281 570 CONTINUE
1282*
1283 ntest = 21
1284 IF( n.GT.0 ) THEN
1285 IF( il.NE.1 ) THEN
1286 vl = wa1( il ) - max( half*
1287 \$ ( wa1( il )-wa1( il-1 ) ), ten*ulp*temp3,
1288 \$ ten*rtunfl )
1289 ELSE
1290 vl = wa1( 1 ) - max( half*( wa1( n )-wa1( 1 ) ),
1291 \$ ten*ulp*temp3, ten*rtunfl )
1292 END IF
1293 IF( iu.NE.n ) THEN
1294 vu = wa1( iu ) + max( half*
1295 \$ ( wa1( iu+1 )-wa1( iu ) ), ten*ulp*temp3,
1296 \$ ten*rtunfl )
1297 ELSE
1298 vu = wa1( n ) + max( half*( wa1( n )-wa1( 1 ) ),
1299 \$ ten*ulp*temp3, ten*rtunfl )
1300 END IF
1301 ELSE
1302 vl = zero
1303 vu = one
1304 END IF
1305*
1306 DO 580 i = 1, n
1307 d1( i ) = real( a( i, i ) )
1308 580 CONTINUE
1309 DO 590 i = 1, n - 1
1310 d2( i ) = real( a( i+1, i ) )
1311 590 CONTINUE
1312 srnamt = 'SSTEVR'
1313 CALL sstevr( 'V', 'V', n, d1, d2, vl, vu, il, iu, abstol,
1314 \$ m2, wa2, z, ldu, iwork, work, lwork,
1315 \$ iwork(2*n+1), liwork-2*n, iinfo )
1316 IF( iinfo.NE.0 ) THEN
1317 WRITE( nounit, fmt = 9999 )'SSTEVR(V,V)', iinfo, n,
1318 \$ jtype, ioldsd
1319 info = abs( iinfo )
1320 IF( iinfo.LT.0 ) THEN
1321 RETURN
1322 ELSE
1323 result( 22 ) = ulpinv
1324 result( 23 ) = ulpinv
1325 result( 24 ) = ulpinv
1326 GO TO 630
1327 END IF
1328 END IF
1329*
1330 IF( m2.EQ.0 .AND. n.GT.0 ) THEN
1331 result( 22 ) = ulpinv
1332 result( 23 ) = ulpinv
1333 result( 24 ) = ulpinv
1334 GO TO 630
1335 END IF
1336*
1337* Do tests 22 and 23.
1338*
1339 DO 600 i = 1, n
1340 d3( i ) = real( a( i, i ) )
1341 600 CONTINUE
1342 DO 610 i = 1, n - 1
1343 d4( i ) = real( a( i+1, i ) )
1344 610 CONTINUE
1345 CALL sstt22( n, m2, 0, d3, d4, wa2, d2, z, ldu, work,
1346 \$ max( 1, m2 ), result( 22 ) )
1347*
1348 ntest = 24
1349 DO 620 i = 1, n - 1
1350 d4( i ) = real( a( i+1, i ) )
1351 620 CONTINUE
1352 srnamt = 'SSTEVR'
1353 CALL sstevr( 'N', 'V', n, d3, d4, vl, vu, il, iu, abstol,
1354 \$ m3, wa3, z, ldu, iwork, work, lwork,
1355 \$ iwork(2*n+1), liwork-2*n, iinfo )
1356 IF( iinfo.NE.0 ) THEN
1357 WRITE( nounit, fmt = 9999 )'SSTEVR(N,V)', iinfo, n,
1358 \$ jtype, ioldsd
1359 info = abs( iinfo )
1360 IF( iinfo.LT.0 ) THEN
1361 RETURN
1362 ELSE
1363 result( 24 ) = ulpinv
1364 GO TO 630
1365 END IF
1366 END IF
1367*
1368* Do test 24.
1369*
1370 temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1371 temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1372 result( 24 ) = ( temp1+temp2 ) / max( unfl, temp3*ulp )
1373*
1374 630 CONTINUE
1375*
1376*
1377*
1378 ELSE
1379*
1380 DO 640 i = 1, 24
1381 result( i ) = zero
1382 640 CONTINUE
1383 ntest = 24
1384 END IF
1385*
1386* Perform remaining tests storing upper or lower triangular
1387* part of matrix.
1388*
1389 DO 1720 iuplo = 0, 1
1390 IF( iuplo.EQ.0 ) THEN
1391 uplo = 'L'
1392 ELSE
1393 uplo = 'U'
1394 END IF
1395*
1396* 4) Call SSYEV and SSYEVX.
1397*
1398 CALL slacpy( ' ', n, n, a, lda, v, ldu )
1399*
1400 ntest = ntest + 1
1401 srnamt = 'SSYEV'
1402 CALL ssyev( 'V', uplo, n, a, ldu, d1, work, lwork,
1403 \$ iinfo )
1404 IF( iinfo.NE.0 ) THEN
1405 WRITE( nounit, fmt = 9999 )'SSYEV(V,' // uplo // ')',
1406 \$ iinfo, n, jtype, ioldsd
1407 info = abs( iinfo )
1408 IF( iinfo.LT.0 ) THEN
1409 RETURN
1410 ELSE
1411 result( ntest ) = ulpinv
1412 result( ntest+1 ) = ulpinv
1413 result( ntest+2 ) = ulpinv
1414 GO TO 660
1415 END IF
1416 END IF
1417*
1418* Do tests 25 and 26 (or +54)
1419*
1420 CALL ssyt21( 1, uplo, n, 0, v, ldu, d1, d2, a, ldu, z,
1421 \$ ldu, tau, work, result( ntest ) )
1422*
1423 CALL slacpy( ' ', n, n, v, ldu, a, lda )
1424*
1425 ntest = ntest + 2
1426 srnamt = 'SSYEV_2STAGE'
1427 CALL ssyev_2stage( 'N', uplo, n, a, ldu, d3, work, lwork,
1428 \$ iinfo )
1429 IF( iinfo.NE.0 ) THEN
1430 WRITE( nounit, fmt = 9999 )
1431 \$ 'SSYEV_2STAGE(N,' // uplo // ')',
1432 \$ iinfo, n, jtype, ioldsd
1433 info = abs( iinfo )
1434 IF( iinfo.LT.0 ) THEN
1435 RETURN
1436 ELSE
1437 result( ntest ) = ulpinv
1438 GO TO 660
1439 END IF
1440 END IF
1441*
1442* Do test 27 (or +54)
1443*
1444 temp1 = zero
1445 temp2 = zero
1446 DO 650 j = 1, n
1447 temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
1448 temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
1449 650 CONTINUE
1450 result( ntest ) = temp2 / max( unfl,
1451 \$ ulp*max( temp1, temp2 ) )
1452*
1453 660 CONTINUE
1454 CALL slacpy( ' ', n, n, v, ldu, a, lda )
1455*
1456 ntest = ntest + 1
1457*
1458 IF( n.GT.0 ) THEN
1459 temp3 = max( abs( d1( 1 ) ), abs( d1( n ) ) )
1460 IF( il.NE.1 ) THEN
1461 vl = d1( il ) - max( half*( d1( il )-d1( il-1 ) ),
1462 \$ ten*ulp*temp3, ten*rtunfl )
1463 ELSE IF( n.GT.0 ) THEN
1464 vl = d1( 1 ) - max( half*( d1( n )-d1( 1 ) ),
1465 \$ ten*ulp*temp3, ten*rtunfl )
1466 END IF
1467 IF( iu.NE.n ) THEN
1468 vu = d1( iu ) + max( half*( d1( iu+1 )-d1( iu ) ),
1469 \$ ten*ulp*temp3, ten*rtunfl )
1470 ELSE IF( n.GT.0 ) THEN
1471 vu = d1( n ) + max( half*( d1( n )-d1( 1 ) ),
1472 \$ ten*ulp*temp3, ten*rtunfl )
1473 END IF
1474 ELSE
1475 temp3 = zero
1476 vl = zero
1477 vu = one
1478 END IF
1479*
1480 srnamt = 'SSYEVX'
1481 CALL ssyevx( 'V', 'A', uplo, n, a, ldu, vl, vu, il, iu,
1482 \$ abstol, m, wa1, z, ldu, work, lwork, iwork,
1483 \$ iwork( 5*n+1 ), iinfo )
1484 IF( iinfo.NE.0 ) THEN
1485 WRITE( nounit, fmt = 9999 )'SSYEVX(V,A,' // uplo //
1486 \$ ')', iinfo, n, jtype, ioldsd
1487 info = abs( iinfo )
1488 IF( iinfo.LT.0 ) THEN
1489 RETURN
1490 ELSE
1491 result( ntest ) = ulpinv
1492 result( ntest+1 ) = ulpinv
1493 result( ntest+2 ) = ulpinv
1494 GO TO 680
1495 END IF
1496 END IF
1497*
1498* Do tests 28 and 29 (or +54)
1499*
1500 CALL slacpy( ' ', n, n, v, ldu, a, lda )
1501*
1502 CALL ssyt21( 1, uplo, n, 0, a, ldu, d1, d2, z, ldu, v,
1503 \$ ldu, tau, work, result( ntest ) )
1504*
1505 ntest = ntest + 2
1506 srnamt = 'SSYEVX_2STAGE'
1507 CALL ssyevx_2stage( 'N', 'A', uplo, n, a, ldu, vl, vu,
1508 \$ il, iu, abstol, m2, wa2, z, ldu, work,
1509 \$ lwork, iwork, iwork( 5*n+1 ), iinfo )
1510 IF( iinfo.NE.0 ) THEN
1511 WRITE( nounit, fmt = 9999 )
1512 \$ 'SSYEVX_2STAGE(N,A,' // uplo //
1513 \$ ')', iinfo, n, jtype, ioldsd
1514 info = abs( iinfo )
1515 IF( iinfo.LT.0 ) THEN
1516 RETURN
1517 ELSE
1518 result( ntest ) = ulpinv
1519 GO TO 680
1520 END IF
1521 END IF
1522*
1523* Do test 30 (or +54)
1524*
1525 temp1 = zero
1526 temp2 = zero
1527 DO 670 j = 1, n
1528 temp1 = max( temp1, abs( wa1( j ) ), abs( wa2( j ) ) )
1529 temp2 = max( temp2, abs( wa1( j )-wa2( j ) ) )
1530 670 CONTINUE
1531 result( ntest ) = temp2 / max( unfl,
1532 \$ ulp*max( temp1, temp2 ) )
1533*
1534 680 CONTINUE
1535*
1536 ntest = ntest + 1
1537 CALL slacpy( ' ', n, n, v, ldu, a, lda )
1538 srnamt = 'SSYEVX'
1539 CALL ssyevx( 'V', 'I', uplo, n, a, ldu, vl, vu, il, iu,
1540 \$ abstol, m2, wa2, z, ldu, work, lwork, iwork,
1541 \$ iwork( 5*n+1 ), iinfo )
1542 IF( iinfo.NE.0 ) THEN
1543 WRITE( nounit, fmt = 9999 )'SSYEVX(V,I,' // uplo //
1544 \$ ')', iinfo, n, jtype, ioldsd
1545 info = abs( iinfo )
1546 IF( iinfo.LT.0 ) THEN
1547 RETURN
1548 ELSE
1549 result( ntest ) = ulpinv
1550 result( ntest+1 ) = ulpinv
1551 result( ntest+2 ) = ulpinv
1552 GO TO 690
1553 END IF
1554 END IF
1555*
1556* Do tests 31 and 32 (or +54)
1557*
1558 CALL slacpy( ' ', n, n, v, ldu, a, lda )
1559*
1560 CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
1561 \$ v, ldu, tau, work, result( ntest ) )
1562*
1563 ntest = ntest + 2
1564 CALL slacpy( ' ', n, n, v, ldu, a, lda )
1565 srnamt = 'SSYEVX_2STAGE'
1566 CALL ssyevx_2stage( 'N', 'I', uplo, n, a, ldu, vl, vu,
1567 \$ il, iu, abstol, m3, wa3, z, ldu, work,
1568 \$ lwork, iwork, iwork( 5*n+1 ), iinfo )
1569 IF( iinfo.NE.0 ) THEN
1570 WRITE( nounit, fmt = 9999 )
1571 \$ 'SSYEVX_2STAGE(N,I,' // uplo //
1572 \$ ')', iinfo, n, jtype, ioldsd
1573 info = abs( iinfo )
1574 IF( iinfo.LT.0 ) THEN
1575 RETURN
1576 ELSE
1577 result( ntest ) = ulpinv
1578 GO TO 690
1579 END IF
1580 END IF
1581*
1582* Do test 33 (or +54)
1583*
1584 temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1585 temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1586 result( ntest ) = ( temp1+temp2 ) /
1587 \$ max( unfl, ulp*temp3 )
1588 690 CONTINUE
1589*
1590 ntest = ntest + 1
1591 CALL slacpy( ' ', n, n, v, ldu, a, lda )
1592 srnamt = 'SSYEVX'
1593 CALL ssyevx( 'V', 'V', uplo, n, a, ldu, vl, vu, il, iu,
1594 \$ abstol, m2, wa2, z, ldu, work, lwork, iwork,
1595 \$ iwork( 5*n+1 ), iinfo )
1596 IF( iinfo.NE.0 ) THEN
1597 WRITE( nounit, fmt = 9999 )'SSYEVX(V,V,' // uplo //
1598 \$ ')', iinfo, n, jtype, ioldsd
1599 info = abs( iinfo )
1600 IF( iinfo.LT.0 ) THEN
1601 RETURN
1602 ELSE
1603 result( ntest ) = ulpinv
1604 result( ntest+1 ) = ulpinv
1605 result( ntest+2 ) = ulpinv
1606 GO TO 700
1607 END IF
1608 END IF
1609*
1610* Do tests 34 and 35 (or +54)
1611*
1612 CALL slacpy( ' ', n, n, v, ldu, a, lda )
1613*
1614 CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
1615 \$ v, ldu, tau, work, result( ntest ) )
1616*
1617 ntest = ntest + 2
1618 CALL slacpy( ' ', n, n, v, ldu, a, lda )
1619 srnamt = 'SSYEVX_2STAGE'
1620 CALL ssyevx_2stage( 'N', 'V', uplo, n, a, ldu, vl, vu,
1621 \$ il, iu, abstol, m3, wa3, z, ldu, work,
1622 \$ lwork, iwork, iwork( 5*n+1 ), iinfo )
1623 IF( iinfo.NE.0 ) THEN
1624 WRITE( nounit, fmt = 9999 )
1625 \$ 'SSYEVX_2STAGE(N,V,' // uplo //
1626 \$ ')', iinfo, n, jtype, ioldsd
1627 info = abs( iinfo )
1628 IF( iinfo.LT.0 ) THEN
1629 RETURN
1630 ELSE
1631 result( ntest ) = ulpinv
1632 GO TO 700
1633 END IF
1634 END IF
1635*
1636 IF( m3.EQ.0 .AND. n.GT.0 ) THEN
1637 result( ntest ) = ulpinv
1638 GO TO 700
1639 END IF
1640*
1641* Do test 36 (or +54)
1642*
1643 temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1644 temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1645 IF( n.GT.0 ) THEN
1646 temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
1647 ELSE
1648 temp3 = zero
1649 END IF
1650 result( ntest ) = ( temp1+temp2 ) /
1651 \$ max( unfl, temp3*ulp )
1652*
1653 700 CONTINUE
1654*
1655* 5) Call SSPEV and SSPEVX.
1656*
1657 CALL slacpy( ' ', n, n, v, ldu, a, lda )
1658*
1659* Load array WORK with the upper or lower triangular
1660* part of the matrix in packed form.
1661*
1662 IF( iuplo.EQ.1 ) THEN
1663 indx = 1
1664 DO 720 j = 1, n
1665 DO 710 i = 1, j
1666 work( indx ) = a( i, j )
1667 indx = indx + 1
1668 710 CONTINUE
1669 720 CONTINUE
1670 ELSE
1671 indx = 1
1672 DO 740 j = 1, n
1673 DO 730 i = j, n
1674 work( indx ) = a( i, j )
1675 indx = indx + 1
1676 730 CONTINUE
1677 740 CONTINUE
1678 END IF
1679*
1680 ntest = ntest + 1
1681 srnamt = 'SSPEV'
1682 CALL sspev( 'V', uplo, n, work, d1, z, ldu, v, iinfo )
1683 IF( iinfo.NE.0 ) THEN
1684 WRITE( nounit, fmt = 9999 )'SSPEV(V,' // uplo // ')',
1685 \$ iinfo, n, jtype, ioldsd
1686 info = abs( iinfo )
1687 IF( iinfo.LT.0 ) THEN
1688 RETURN
1689 ELSE
1690 result( ntest ) = ulpinv
1691 result( ntest+1 ) = ulpinv
1692 result( ntest+2 ) = ulpinv
1693 GO TO 800
1694 END IF
1695 END IF
1696*
1697* Do tests 37 and 38 (or +54)
1698*
1699 CALL ssyt21( 1, uplo, n, 0, a, lda, d1, d2, z, ldu, v,
1700 \$ ldu, tau, work, result( ntest ) )
1701*
1702 IF( iuplo.EQ.1 ) THEN
1703 indx = 1
1704 DO 760 j = 1, n
1705 DO 750 i = 1, j
1706 work( indx ) = a( i, j )
1707 indx = indx + 1
1708 750 CONTINUE
1709 760 CONTINUE
1710 ELSE
1711 indx = 1
1712 DO 780 j = 1, n
1713 DO 770 i = j, n
1714 work( indx ) = a( i, j )
1715 indx = indx + 1
1716 770 CONTINUE
1717 780 CONTINUE
1718 END IF
1719*
1720 ntest = ntest + 2
1721 srnamt = 'SSPEV'
1722 CALL sspev( 'N', uplo, n, work, d3, z, ldu, v, iinfo )
1723 IF( iinfo.NE.0 ) THEN
1724 WRITE( nounit, fmt = 9999 )'SSPEV(N,' // uplo // ')',
1725 \$ iinfo, n, jtype, ioldsd
1726 info = abs( iinfo )
1727 IF( iinfo.LT.0 ) THEN
1728 RETURN
1729 ELSE
1730 result( ntest ) = ulpinv
1731 GO TO 800
1732 END IF
1733 END IF
1734*
1735* Do test 39 (or +54)
1736*
1737 temp1 = zero
1738 temp2 = zero
1739 DO 790 j = 1, n
1740 temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
1741 temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
1742 790 CONTINUE
1743 result( ntest ) = temp2 / max( unfl,
1744 \$ ulp*max( temp1, temp2 ) )
1745*
1746* Load array WORK with the upper or lower triangular part
1747* of the matrix in packed form.
1748*
1749 800 CONTINUE
1750 IF( iuplo.EQ.1 ) THEN
1751 indx = 1
1752 DO 820 j = 1, n
1753 DO 810 i = 1, j
1754 work( indx ) = a( i, j )
1755 indx = indx + 1
1756 810 CONTINUE
1757 820 CONTINUE
1758 ELSE
1759 indx = 1
1760 DO 840 j = 1, n
1761 DO 830 i = j, n
1762 work( indx ) = a( i, j )
1763 indx = indx + 1
1764 830 CONTINUE
1765 840 CONTINUE
1766 END IF
1767*
1768 ntest = ntest + 1
1769*
1770 IF( n.GT.0 ) THEN
1771 temp3 = max( abs( d1( 1 ) ), abs( d1( n ) ) )
1772 IF( il.NE.1 ) THEN
1773 vl = d1( il ) - max( half*( d1( il )-d1( il-1 ) ),
1774 \$ ten*ulp*temp3, ten*rtunfl )
1775 ELSE IF( n.GT.0 ) THEN
1776 vl = d1( 1 ) - max( half*( d1( n )-d1( 1 ) ),
1777 \$ ten*ulp*temp3, ten*rtunfl )
1778 END IF
1779 IF( iu.NE.n ) THEN
1780 vu = d1( iu ) + max( half*( d1( iu+1 )-d1( iu ) ),
1781 \$ ten*ulp*temp3, ten*rtunfl )
1782 ELSE IF( n.GT.0 ) THEN
1783 vu = d1( n ) + max( half*( d1( n )-d1( 1 ) ),
1784 \$ ten*ulp*temp3, ten*rtunfl )
1785 END IF
1786 ELSE
1787 temp3 = zero
1788 vl = zero
1789 vu = one
1790 END IF
1791*
1792 srnamt = 'SSPEVX'
1793 CALL sspevx( 'V', 'A', uplo, n, work, vl, vu, il, iu,
1794 \$ abstol, m, wa1, z, ldu, v, iwork,
1795 \$ iwork( 5*n+1 ), iinfo )
1796 IF( iinfo.NE.0 ) THEN
1797 WRITE( nounit, fmt = 9999 )'SSPEVX(V,A,' // uplo //
1798 \$ ')', iinfo, n, jtype, ioldsd
1799 info = abs( iinfo )
1800 IF( iinfo.LT.0 ) THEN
1801 RETURN
1802 ELSE
1803 result( ntest ) = ulpinv
1804 result( ntest+1 ) = ulpinv
1805 result( ntest+2 ) = ulpinv
1806 GO TO 900
1807 END IF
1808 END IF
1809*
1810* Do tests 40 and 41 (or +54)
1811*
1812 CALL ssyt21( 1, uplo, n, 0, a, ldu, wa1, d2, z, ldu, v,
1813 \$ ldu, tau, work, result( ntest ) )
1814*
1815 ntest = ntest + 2
1816*
1817 IF( iuplo.EQ.1 ) THEN
1818 indx = 1
1819 DO 860 j = 1, n
1820 DO 850 i = 1, j
1821 work( indx ) = a( i, j )
1822 indx = indx + 1
1823 850 CONTINUE
1824 860 CONTINUE
1825 ELSE
1826 indx = 1
1827 DO 880 j = 1, n
1828 DO 870 i = j, n
1829 work( indx ) = a( i, j )
1830 indx = indx + 1
1831 870 CONTINUE
1832 880 CONTINUE
1833 END IF
1834*
1835 srnamt = 'SSPEVX'
1836 CALL sspevx( 'N', 'A', uplo, n, work, vl, vu, il, iu,
1837 \$ abstol, m2, wa2, z, ldu, v, iwork,
1838 \$ iwork( 5*n+1 ), iinfo )
1839 IF( iinfo.NE.0 ) THEN
1840 WRITE( nounit, fmt = 9999 )'SSPEVX(N,A,' // uplo //
1841 \$ ')', iinfo, n, jtype, ioldsd
1842 info = abs( iinfo )
1843 IF( iinfo.LT.0 ) THEN
1844 RETURN
1845 ELSE
1846 result( ntest ) = ulpinv
1847 GO TO 900
1848 END IF
1849 END IF
1850*
1851* Do test 42 (or +54)
1852*
1853 temp1 = zero
1854 temp2 = zero
1855 DO 890 j = 1, n
1856 temp1 = max( temp1, abs( wa1( j ) ), abs( wa2( j ) ) )
1857 temp2 = max( temp2, abs( wa1( j )-wa2( j ) ) )
1858 890 CONTINUE
1859 result( ntest ) = temp2 / max( unfl,
1860 \$ ulp*max( temp1, temp2 ) )
1861*
1862 900 CONTINUE
1863 IF( iuplo.EQ.1 ) THEN
1864 indx = 1
1865 DO 920 j = 1, n
1866 DO 910 i = 1, j
1867 work( indx ) = a( i, j )
1868 indx = indx + 1
1869 910 CONTINUE
1870 920 CONTINUE
1871 ELSE
1872 indx = 1
1873 DO 940 j = 1, n
1874 DO 930 i = j, n
1875 work( indx ) = a( i, j )
1876 indx = indx + 1
1877 930 CONTINUE
1878 940 CONTINUE
1879 END IF
1880*
1881 ntest = ntest + 1
1882*
1883 srnamt = 'SSPEVX'
1884 CALL sspevx( 'V', 'I', uplo, n, work, vl, vu, il, iu,
1885 \$ abstol, m2, wa2, z, ldu, v, iwork,
1886 \$ iwork( 5*n+1 ), iinfo )
1887 IF( iinfo.NE.0 ) THEN
1888 WRITE( nounit, fmt = 9999 )'SSPEVX(V,I,' // uplo //
1889 \$ ')', iinfo, n, jtype, ioldsd
1890 info = abs( iinfo )
1891 IF( iinfo.LT.0 ) THEN
1892 RETURN
1893 ELSE
1894 result( ntest ) = ulpinv
1895 result( ntest+1 ) = ulpinv
1896 result( ntest+2 ) = ulpinv
1897 GO TO 990
1898 END IF
1899 END IF
1900*
1901* Do tests 43 and 44 (or +54)
1902*
1903 CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
1904 \$ v, ldu, tau, work, result( ntest ) )
1905*
1906 ntest = ntest + 2
1907*
1908 IF( iuplo.EQ.1 ) THEN
1909 indx = 1
1910 DO 960 j = 1, n
1911 DO 950 i = 1, j
1912 work( indx ) = a( i, j )
1913 indx = indx + 1
1914 950 CONTINUE
1915 960 CONTINUE
1916 ELSE
1917 indx = 1
1918 DO 980 j = 1, n
1919 DO 970 i = j, n
1920 work( indx ) = a( i, j )
1921 indx = indx + 1
1922 970 CONTINUE
1923 980 CONTINUE
1924 END IF
1925*
1926 srnamt = 'SSPEVX'
1927 CALL sspevx( 'N', 'I', uplo, n, work, vl, vu, il, iu,
1928 \$ abstol, m3, wa3, z, ldu, v, iwork,
1929 \$ iwork( 5*n+1 ), iinfo )
1930 IF( iinfo.NE.0 ) THEN
1931 WRITE( nounit, fmt = 9999 )'SSPEVX(N,I,' // uplo //
1932 \$ ')', iinfo, n, jtype, ioldsd
1933 info = abs( iinfo )
1934 IF( iinfo.LT.0 ) THEN
1935 RETURN
1936 ELSE
1937 result( ntest ) = ulpinv
1938 GO TO 990
1939 END IF
1940 END IF
1941*
1942 IF( m3.EQ.0 .AND. n.GT.0 ) THEN
1943 result( ntest ) = ulpinv
1944 GO TO 990
1945 END IF
1946*
1947* Do test 45 (or +54)
1948*
1949 temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
1950 temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
1951 IF( n.GT.0 ) THEN
1952 temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
1953 ELSE
1954 temp3 = zero
1955 END IF
1956 result( ntest ) = ( temp1+temp2 ) /
1957 \$ max( unfl, temp3*ulp )
1958*
1959 990 CONTINUE
1960 IF( iuplo.EQ.1 ) THEN
1961 indx = 1
1962 DO 1010 j = 1, n
1963 DO 1000 i = 1, j
1964 work( indx ) = a( i, j )
1965 indx = indx + 1
1966 1000 CONTINUE
1967 1010 CONTINUE
1968 ELSE
1969 indx = 1
1970 DO 1030 j = 1, n
1971 DO 1020 i = j, n
1972 work( indx ) = a( i, j )
1973 indx = indx + 1
1974 1020 CONTINUE
1975 1030 CONTINUE
1976 END IF
1977*
1978 ntest = ntest + 1
1979*
1980 srnamt = 'SSPEVX'
1981 CALL sspevx( 'V', 'V', uplo, n, work, vl, vu, il, iu,
1982 \$ abstol, m2, wa2, z, ldu, v, iwork,
1983 \$ iwork( 5*n+1 ), iinfo )
1984 IF( iinfo.NE.0 ) THEN
1985 WRITE( nounit, fmt = 9999 )'SSPEVX(V,V,' // uplo //
1986 \$ ')', iinfo, n, jtype, ioldsd
1987 info = abs( iinfo )
1988 IF( iinfo.LT.0 ) THEN
1989 RETURN
1990 ELSE
1991 result( ntest ) = ulpinv
1992 result( ntest+1 ) = ulpinv
1993 result( ntest+2 ) = ulpinv
1994 GO TO 1080
1995 END IF
1996 END IF
1997*
1998* Do tests 46 and 47 (or +54)
1999*
2000 CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
2001 \$ v, ldu, tau, work, result( ntest ) )
2002*
2003 ntest = ntest + 2
2004*
2005 IF( iuplo.EQ.1 ) THEN
2006 indx = 1
2007 DO 1050 j = 1, n
2008 DO 1040 i = 1, j
2009 work( indx ) = a( i, j )
2010 indx = indx + 1
2011 1040 CONTINUE
2012 1050 CONTINUE
2013 ELSE
2014 indx = 1
2015 DO 1070 j = 1, n
2016 DO 1060 i = j, n
2017 work( indx ) = a( i, j )
2018 indx = indx + 1
2019 1060 CONTINUE
2020 1070 CONTINUE
2021 END IF
2022*
2023 srnamt = 'SSPEVX'
2024 CALL sspevx( 'N', 'V', uplo, n, work, vl, vu, il, iu,
2025 \$ abstol, m3, wa3, z, ldu, v, iwork,
2026 \$ iwork( 5*n+1 ), iinfo )
2027 IF( iinfo.NE.0 ) THEN
2028 WRITE( nounit, fmt = 9999 )'SSPEVX(N,V,' // uplo //
2029 \$ ')', iinfo, n, jtype, ioldsd
2030 info = abs( iinfo )
2031 IF( iinfo.LT.0 ) THEN
2032 RETURN
2033 ELSE
2034 result( ntest ) = ulpinv
2035 GO TO 1080
2036 END IF
2037 END IF
2038*
2039 IF( m3.EQ.0 .AND. n.GT.0 ) THEN
2040 result( ntest ) = ulpinv
2041 GO TO 1080
2042 END IF
2043*
2044* Do test 48 (or +54)
2045*
2046 temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
2047 temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
2048 IF( n.GT.0 ) THEN
2049 temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
2050 ELSE
2051 temp3 = zero
2052 END IF
2053 result( ntest ) = ( temp1+temp2 ) /
2054 \$ max( unfl, temp3*ulp )
2055*
2056 1080 CONTINUE
2057*
2058* 6) Call SSBEV and SSBEVX.
2059*
2060 IF( jtype.LE.7 ) THEN
2061 kd = 1
2062 ELSE IF( jtype.GE.8 .AND. jtype.LE.15 ) THEN
2063 kd = max( n-1, 0 )
2064 ELSE
2065 kd = ihbw
2066 END IF
2067*
2068* Load array V with the upper or lower triangular part
2069* of the matrix in band form.
2070*
2071 IF( iuplo.EQ.1 ) THEN
2072 DO 1100 j = 1, n
2073 DO 1090 i = max( 1, j-kd ), j
2074 v( kd+1+i-j, j ) = a( i, j )
2075 1090 CONTINUE
2076 1100 CONTINUE
2077 ELSE
2078 DO 1120 j = 1, n
2079 DO 1110 i = j, min( n, j+kd )
2080 v( 1+i-j, j ) = a( i, j )
2081 1110 CONTINUE
2082 1120 CONTINUE
2083 END IF
2084*
2085 ntest = ntest + 1
2086 srnamt = 'SSBEV'
2087 CALL ssbev( 'V', uplo, n, kd, v, ldu, d1, z, ldu, work,
2088 \$ iinfo )
2089 IF( iinfo.NE.0 ) THEN
2090 WRITE( nounit, fmt = 9999 )'SSBEV(V,' // uplo // ')',
2091 \$ iinfo, n, jtype, ioldsd
2092 info = abs( iinfo )
2093 IF( iinfo.LT.0 ) THEN
2094 RETURN
2095 ELSE
2096 result( ntest ) = ulpinv
2097 result( ntest+1 ) = ulpinv
2098 result( ntest+2 ) = ulpinv
2099 GO TO 1180
2100 END IF
2101 END IF
2102*
2103* Do tests 49 and 50 (or ... )
2104*
2105 CALL ssyt21( 1, uplo, n, 0, a, lda, d1, d2, z, ldu, v,
2106 \$ ldu, tau, work, result( ntest ) )
2107*
2108 IF( iuplo.EQ.1 ) THEN
2109 DO 1140 j = 1, n
2110 DO 1130 i = max( 1, j-kd ), j
2111 v( kd+1+i-j, j ) = a( i, j )
2112 1130 CONTINUE
2113 1140 CONTINUE
2114 ELSE
2115 DO 1160 j = 1, n
2116 DO 1150 i = j, min( n, j+kd )
2117 v( 1+i-j, j ) = a( i, j )
2118 1150 CONTINUE
2119 1160 CONTINUE
2120 END IF
2121*
2122 ntest = ntest + 2
2123 srnamt = 'SSBEV_2STAGE'
2124 CALL ssbev_2stage( 'N', uplo, n, kd, v, ldu, d3, z, ldu,
2125 \$ work, lwork, iinfo )
2126 IF( iinfo.NE.0 ) THEN
2127 WRITE( nounit, fmt = 9999 )
2128 \$ 'SSBEV_2STAGE(N,' // uplo // ')',
2129 \$ iinfo, n, jtype, ioldsd
2130 info = abs( iinfo )
2131 IF( iinfo.LT.0 ) THEN
2132 RETURN
2133 ELSE
2134 result( ntest ) = ulpinv
2135 GO TO 1180
2136 END IF
2137 END IF
2138*
2139* Do test 51 (or +54)
2140*
2141 temp1 = zero
2142 temp2 = zero
2143 DO 1170 j = 1, n
2144 temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
2145 temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
2146 1170 CONTINUE
2147 result( ntest ) = temp2 / max( unfl,
2148 \$ ulp*max( temp1, temp2 ) )
2149*
2150* Load array V with the upper or lower triangular part
2151* of the matrix in band form.
2152*
2153 1180 CONTINUE
2154 IF( iuplo.EQ.1 ) THEN
2155 DO 1200 j = 1, n
2156 DO 1190 i = max( 1, j-kd ), j
2157 v( kd+1+i-j, j ) = a( i, j )
2158 1190 CONTINUE
2159 1200 CONTINUE
2160 ELSE
2161 DO 1220 j = 1, n
2162 DO 1210 i = j, min( n, j+kd )
2163 v( 1+i-j, j ) = a( i, j )
2164 1210 CONTINUE
2165 1220 CONTINUE
2166 END IF
2167*
2168 ntest = ntest + 1
2169 srnamt = 'SSBEVX'
2170 CALL ssbevx( 'V', 'A', uplo, n, kd, v, ldu, u, ldu, vl,
2171 \$ vu, il, iu, abstol, m, wa2, z, ldu, work,
2172 \$ iwork, iwork( 5*n+1 ), iinfo )
2173 IF( iinfo.NE.0 ) THEN
2174 WRITE( nounit, fmt = 9999 )'SSBEVX(V,A,' // uplo //
2175 \$ ')', iinfo, n, jtype, ioldsd
2176 info = abs( iinfo )
2177 IF( iinfo.LT.0 ) THEN
2178 RETURN
2179 ELSE
2180 result( ntest ) = ulpinv
2181 result( ntest+1 ) = ulpinv
2182 result( ntest+2 ) = ulpinv
2183 GO TO 1280
2184 END IF
2185 END IF
2186*
2187* Do tests 52 and 53 (or +54)
2188*
2189 CALL ssyt21( 1, uplo, n, 0, a, ldu, wa2, d2, z, ldu, v,
2190 \$ ldu, tau, work, result( ntest ) )
2191*
2192 ntest = ntest + 2
2193*
2194 IF( iuplo.EQ.1 ) THEN
2195 DO 1240 j = 1, n
2196 DO 1230 i = max( 1, j-kd ), j
2197 v( kd+1+i-j, j ) = a( i, j )
2198 1230 CONTINUE
2199 1240 CONTINUE
2200 ELSE
2201 DO 1260 j = 1, n
2202 DO 1250 i = j, min( n, j+kd )
2203 v( 1+i-j, j ) = a( i, j )
2204 1250 CONTINUE
2205 1260 CONTINUE
2206 END IF
2207*
2208 srnamt = 'SSBEVX_2STAGE'
2209 CALL ssbevx_2stage( 'N', 'A', uplo, n, kd, v, ldu,
2210 \$ u, ldu, vl, vu, il, iu, abstol, m3, wa3,
2211 \$ z, ldu, work, lwork, iwork, iwork( 5*n+1 ),
2212 \$ iinfo )
2213 IF( iinfo.NE.0 ) THEN
2214 WRITE( nounit, fmt = 9999 )
2215 \$ 'SSBEVX_2STAGE(N,A,' // uplo //
2216 \$ ')', iinfo, n, jtype, ioldsd
2217 info = abs( iinfo )
2218 IF( iinfo.LT.0 ) THEN
2219 RETURN
2220 ELSE
2221 result( ntest ) = ulpinv
2222 GO TO 1280
2223 END IF
2224 END IF
2225*
2226* Do test 54 (or +54)
2227*
2228 temp1 = zero
2229 temp2 = zero
2230 DO 1270 j = 1, n
2231 temp1 = max( temp1, abs( wa2( j ) ), abs( wa3( j ) ) )
2232 temp2 = max( temp2, abs( wa2( j )-wa3( j ) ) )
2233 1270 CONTINUE
2234 result( ntest ) = temp2 / max( unfl,
2235 \$ ulp*max( temp1, temp2 ) )
2236*
2237 1280 CONTINUE
2238 ntest = ntest + 1
2239 IF( iuplo.EQ.1 ) THEN
2240 DO 1300 j = 1, n
2241 DO 1290 i = max( 1, j-kd ), j
2242 v( kd+1+i-j, j ) = a( i, j )
2243 1290 CONTINUE
2244 1300 CONTINUE
2245 ELSE
2246 DO 1320 j = 1, n
2247 DO 1310 i = j, min( n, j+kd )
2248 v( 1+i-j, j ) = a( i, j )
2249 1310 CONTINUE
2250 1320 CONTINUE
2251 END IF
2252*
2253 srnamt = 'SSBEVX'
2254 CALL ssbevx( 'V', 'I', uplo, n, kd, v, ldu, u, ldu, vl,
2255 \$ vu, il, iu, abstol, m2, wa2, z, ldu, work,
2256 \$ iwork, iwork( 5*n+1 ), iinfo )
2257 IF( iinfo.NE.0 ) THEN
2258 WRITE( nounit, fmt = 9999 )'SSBEVX(V,I,' // uplo //
2259 \$ ')', iinfo, n, jtype, ioldsd
2260 info = abs( iinfo )
2261 IF( iinfo.LT.0 ) THEN
2262 RETURN
2263 ELSE
2264 result( ntest ) = ulpinv
2265 result( ntest+1 ) = ulpinv
2266 result( ntest+2 ) = ulpinv
2267 GO TO 1370
2268 END IF
2269 END IF
2270*
2271* Do tests 55 and 56 (or +54)
2272*
2273 CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
2274 \$ v, ldu, tau, work, result( ntest ) )
2275*
2276 ntest = ntest + 2
2277*
2278 IF( iuplo.EQ.1 ) THEN
2279 DO 1340 j = 1, n
2280 DO 1330 i = max( 1, j-kd ), j
2281 v( kd+1+i-j, j ) = a( i, j )
2282 1330 CONTINUE
2283 1340 CONTINUE
2284 ELSE
2285 DO 1360 j = 1, n
2286 DO 1350 i = j, min( n, j+kd )
2287 v( 1+i-j, j ) = a( i, j )
2288 1350 CONTINUE
2289 1360 CONTINUE
2290 END IF
2291*
2292 srnamt = 'SSBEVX_2STAGE'
2293 CALL ssbevx_2stage( 'N', 'I', uplo, n, kd, v, ldu,
2294 \$ u, ldu, vl, vu, il, iu, abstol, m3, wa3,
2295 \$ z, ldu, work, lwork, iwork, iwork( 5*n+1 ),
2296 \$ iinfo )
2297 IF( iinfo.NE.0 ) THEN
2298 WRITE( nounit, fmt = 9999 )
2299 \$ 'SSBEVX_2STAGE(N,I,' // uplo //
2300 \$ ')', iinfo, n, jtype, ioldsd
2301 info = abs( iinfo )
2302 IF( iinfo.LT.0 ) THEN
2303 RETURN
2304 ELSE
2305 result( ntest ) = ulpinv
2306 GO TO 1370
2307 END IF
2308 END IF
2309*
2310* Do test 57 (or +54)
2311*
2312 temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
2313 temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
2314 IF( n.GT.0 ) THEN
2315 temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
2316 ELSE
2317 temp3 = zero
2318 END IF
2319 result( ntest ) = ( temp1+temp2 ) /
2320 \$ max( unfl, temp3*ulp )
2321*
2322 1370 CONTINUE
2323 ntest = ntest + 1
2324 IF( iuplo.EQ.1 ) THEN
2325 DO 1390 j = 1, n
2326 DO 1380 i = max( 1, j-kd ), j
2327 v( kd+1+i-j, j ) = a( i, j )
2328 1380 CONTINUE
2329 1390 CONTINUE
2330 ELSE
2331 DO 1410 j = 1, n
2332 DO 1400 i = j, min( n, j+kd )
2333 v( 1+i-j, j ) = a( i, j )
2334 1400 CONTINUE
2335 1410 CONTINUE
2336 END IF
2337*
2338 srnamt = 'SSBEVX'
2339 CALL ssbevx( 'V', 'V', uplo, n, kd, v, ldu, u, ldu, vl,
2340 \$ vu, il, iu, abstol, m2, wa2, z, ldu, work,
2341 \$ iwork, iwork( 5*n+1 ), iinfo )
2342 IF( iinfo.NE.0 ) THEN
2343 WRITE( nounit, fmt = 9999 )'SSBEVX(V,V,' // uplo //
2344 \$ ')', iinfo, n, jtype, ioldsd
2345 info = abs( iinfo )
2346 IF( iinfo.LT.0 ) THEN
2347 RETURN
2348 ELSE
2349 result( ntest ) = ulpinv
2350 result( ntest+1 ) = ulpinv
2351 result( ntest+2 ) = ulpinv
2352 GO TO 1460
2353 END IF
2354 END IF
2355*
2356* Do tests 58 and 59 (or +54)
2357*
2358 CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
2359 \$ v, ldu, tau, work, result( ntest ) )
2360*
2361 ntest = ntest + 2
2362*
2363 IF( iuplo.EQ.1 ) THEN
2364 DO 1430 j = 1, n
2365 DO 1420 i = max( 1, j-kd ), j
2366 v( kd+1+i-j, j ) = a( i, j )
2367 1420 CONTINUE
2368 1430 CONTINUE
2369 ELSE
2370 DO 1450 j = 1, n
2371 DO 1440 i = j, min( n, j+kd )
2372 v( 1+i-j, j ) = a( i, j )
2373 1440 CONTINUE
2374 1450 CONTINUE
2375 END IF
2376*
2377 srnamt = 'SSBEVX_2STAGE'
2378 CALL ssbevx_2stage( 'N', 'V', uplo, n, kd, v, ldu,
2379 \$ u, ldu, vl, vu, il, iu, abstol, m3, wa3,
2380 \$ z, ldu, work, lwork, iwork, iwork( 5*n+1 ),
2381 \$ iinfo )
2382 IF( iinfo.NE.0 ) THEN
2383 WRITE( nounit, fmt = 9999 )
2384 \$ 'SSBEVX_2STAGE(N,V,' // uplo //
2385 \$ ')', iinfo, n, jtype, ioldsd
2386 info = abs( iinfo )
2387 IF( iinfo.LT.0 ) THEN
2388 RETURN
2389 ELSE
2390 result( ntest ) = ulpinv
2391 GO TO 1460
2392 END IF
2393 END IF
2394*
2395 IF( m3.EQ.0 .AND. n.GT.0 ) THEN
2396 result( ntest ) = ulpinv
2397 GO TO 1460
2398 END IF
2399*
2400* Do test 60 (or +54)
2401*
2402 temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
2403 temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
2404 IF( n.GT.0 ) THEN
2405 temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
2406 ELSE
2407 temp3 = zero
2408 END IF
2409 result( ntest ) = ( temp1+temp2 ) /
2410 \$ max( unfl, temp3*ulp )
2411*
2412 1460 CONTINUE
2413*
2414* 7) Call SSYEVD
2415*
2416 CALL slacpy( ' ', n, n, a, lda, v, ldu )
2417*
2418 ntest = ntest + 1
2419 srnamt = 'SSYEVD'
2420 CALL ssyevd( 'V', uplo, n, a, ldu, d1, work, lwedc,
2421 \$ iwork, liwedc, iinfo )
2422 IF( iinfo.NE.0 ) THEN
2423 WRITE( nounit, fmt = 9999 )'SSYEVD(V,' // uplo //
2424 \$ ')', iinfo, n, jtype, ioldsd
2425 info = abs( iinfo )
2426 IF( iinfo.LT.0 ) THEN
2427 RETURN
2428 ELSE
2429 result( ntest ) = ulpinv
2430 result( ntest+1 ) = ulpinv
2431 result( ntest+2 ) = ulpinv
2432 GO TO 1480
2433 END IF
2434 END IF
2435*
2436* Do tests 61 and 62 (or +54)
2437*
2438 CALL ssyt21( 1, uplo, n, 0, v, ldu, d1, d2, a, ldu, z,
2439 \$ ldu, tau, work, result( ntest ) )
2440*
2441 CALL slacpy( ' ', n, n, v, ldu, a, lda )
2442*
2443 ntest = ntest + 2
2444 srnamt = 'SSYEVD_2STAGE'
2445 CALL ssyevd_2stage( 'N', uplo, n, a, ldu, d3, work,
2446 \$ lwork, iwork, liwedc, iinfo )
2447 IF( iinfo.NE.0 ) THEN
2448 WRITE( nounit, fmt = 9999 )
2449 \$ 'SSYEVD_2STAGE(N,' // uplo //
2450 \$ ')', iinfo, n, jtype, ioldsd
2451 info = abs( iinfo )
2452 IF( iinfo.LT.0 ) THEN
2453 RETURN
2454 ELSE
2455 result( ntest ) = ulpinv
2456 GO TO 1480
2457 END IF
2458 END IF
2459*
2460* Do test 63 (or +54)
2461*
2462 temp1 = zero
2463 temp2 = zero
2464 DO 1470 j = 1, n
2465 temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
2466 temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
2467 1470 CONTINUE
2468 result( ntest ) = temp2 / max( unfl,
2469 \$ ulp*max( temp1, temp2 ) )
2470*
2471 1480 CONTINUE
2472*
2473* 8) Call SSPEVD.
2474*
2475 CALL slacpy( ' ', n, n, v, ldu, a, lda )
2476*
2477* Load array WORK with the upper or lower triangular
2478* part of the matrix in packed form.
2479*
2480 IF( iuplo.EQ.1 ) THEN
2481 indx = 1
2482 DO 1500 j = 1, n
2483 DO 1490 i = 1, j
2484 work( indx ) = a( i, j )
2485 indx = indx + 1
2486 1490 CONTINUE
2487 1500 CONTINUE
2488 ELSE
2489 indx = 1
2490 DO 1520 j = 1, n
2491 DO 1510 i = j, n
2492 work( indx ) = a( i, j )
2493 indx = indx + 1
2494 1510 CONTINUE
2495 1520 CONTINUE
2496 END IF
2497*
2498 ntest = ntest + 1
2499 srnamt = 'SSPEVD'
2500 CALL sspevd( 'V', uplo, n, work, d1, z, ldu,
2501 \$ work( indx ), lwedc-indx+1, iwork, liwedc,
2502 \$ iinfo )
2503 IF( iinfo.NE.0 ) THEN
2504 WRITE( nounit, fmt = 9999 )'SSPEVD(V,' // uplo //
2505 \$ ')', iinfo, n, jtype, ioldsd
2506 info = abs( iinfo )
2507 IF( iinfo.LT.0 ) THEN
2508 RETURN
2509 ELSE
2510 result( ntest ) = ulpinv
2511 result( ntest+1 ) = ulpinv
2512 result( ntest+2 ) = ulpinv
2513 GO TO 1580
2514 END IF
2515 END IF
2516*
2517* Do tests 64 and 65 (or +54)
2518*
2519 CALL ssyt21( 1, uplo, n, 0, a, lda, d1, d2, z, ldu, v,
2520 \$ ldu, tau, work, result( ntest ) )
2521*
2522 IF( iuplo.EQ.1 ) THEN
2523 indx = 1
2524 DO 1540 j = 1, n
2525 DO 1530 i = 1, j
2526*
2527 work( indx ) = a( i, j )
2528 indx = indx + 1
2529 1530 CONTINUE
2530 1540 CONTINUE
2531 ELSE
2532 indx = 1
2533 DO 1560 j = 1, n
2534 DO 1550 i = j, n
2535 work( indx ) = a( i, j )
2536 indx = indx + 1
2537 1550 CONTINUE
2538 1560 CONTINUE
2539 END IF
2540*
2541 ntest = ntest + 2
2542 srnamt = 'SSPEVD'
2543 CALL sspevd( 'N', uplo, n, work, d3, z, ldu,
2544 \$ work( indx ), lwedc-indx+1, iwork, liwedc,
2545 \$ iinfo )
2546 IF( iinfo.NE.0 ) THEN
2547 WRITE( nounit, fmt = 9999 )'SSPEVD(N,' // uplo //
2548 \$ ')', iinfo, n, jtype, ioldsd
2549 info = abs( iinfo )
2550 IF( iinfo.LT.0 ) THEN
2551 RETURN
2552 ELSE
2553 result( ntest ) = ulpinv
2554 GO TO 1580
2555 END IF
2556 END IF
2557*
2558* Do test 66 (or +54)
2559*
2560 temp1 = zero
2561 temp2 = zero
2562 DO 1570 j = 1, n
2563 temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
2564 temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
2565 1570 CONTINUE
2566 result( ntest ) = temp2 / max( unfl,
2567 \$ ulp*max( temp1, temp2 ) )
2568 1580 CONTINUE
2569*
2570* 9) Call SSBEVD.
2571*
2572 IF( jtype.LE.7 ) THEN
2573 kd = 1
2574 ELSE IF( jtype.GE.8 .AND. jtype.LE.15 ) THEN
2575 kd = max( n-1, 0 )
2576 ELSE
2577 kd = ihbw
2578 END IF
2579*
2580* Load array V with the upper or lower triangular part
2581* of the matrix in band form.
2582*
2583 IF( iuplo.EQ.1 ) THEN
2584 DO 1600 j = 1, n
2585 DO 1590 i = max( 1, j-kd ), j
2586 v( kd+1+i-j, j ) = a( i, j )
2587 1590 CONTINUE
2588 1600 CONTINUE
2589 ELSE
2590 DO 1620 j = 1, n
2591 DO 1610 i = j, min( n, j+kd )
2592 v( 1+i-j, j ) = a( i, j )
2593 1610 CONTINUE
2594 1620 CONTINUE
2595 END IF
2596*
2597 ntest = ntest + 1
2598 srnamt = 'SSBEVD'
2599 CALL ssbevd( 'V', uplo, n, kd, v, ldu, d1, z, ldu, work,
2600 \$ lwedc, iwork, liwedc, iinfo )
2601 IF( iinfo.NE.0 ) THEN
2602 WRITE( nounit, fmt = 9999 )'SSBEVD(V,' // uplo //
2603 \$ ')', iinfo, n, jtype, ioldsd
2604 info = abs( iinfo )
2605 IF( iinfo.LT.0 ) THEN
2606 RETURN
2607 ELSE
2608 result( ntest ) = ulpinv
2609 result( ntest+1 ) = ulpinv
2610 result( ntest+2 ) = ulpinv
2611 GO TO 1680
2612 END IF
2613 END IF
2614*
2615* Do tests 67 and 68 (or +54)
2616*
2617 CALL ssyt21( 1, uplo, n, 0, a, lda, d1, d2, z, ldu, v,
2618 \$ ldu, tau, work, result( ntest ) )
2619*
2620 IF( iuplo.EQ.1 ) THEN
2621 DO 1640 j = 1, n
2622 DO 1630 i = max( 1, j-kd ), j
2623 v( kd+1+i-j, j ) = a( i, j )
2624 1630 CONTINUE
2625 1640 CONTINUE
2626 ELSE
2627 DO 1660 j = 1, n
2628 DO 1650 i = j, min( n, j+kd )
2629 v( 1+i-j, j ) = a( i, j )
2630 1650 CONTINUE
2631 1660 CONTINUE
2632 END IF
2633*
2634 ntest = ntest + 2
2635 srnamt = 'SSBEVD_2STAGE'
2636 CALL ssbevd_2stage( 'N', uplo, n, kd, v, ldu, d3, z, ldu,
2637 \$ work, lwork, iwork, liwedc, iinfo )
2638 IF( iinfo.NE.0 ) THEN
2639 WRITE( nounit, fmt = 9999 )
2640 \$ 'SSBEVD_2STAGE(N,' // uplo //
2641 \$ ')', iinfo, n, jtype, ioldsd
2642 info = abs( iinfo )
2643 IF( iinfo.LT.0 ) THEN
2644 RETURN
2645 ELSE
2646 result( ntest ) = ulpinv
2647 GO TO 1680
2648 END IF
2649 END IF
2650*
2651* Do test 69 (or +54)
2652*
2653 temp1 = zero
2654 temp2 = zero
2655 DO 1670 j = 1, n
2656 temp1 = max( temp1, abs( d1( j ) ), abs( d3( j ) ) )
2657 temp2 = max( temp2, abs( d1( j )-d3( j ) ) )
2658 1670 CONTINUE
2659 result( ntest ) = temp2 / max( unfl,
2660 \$ ulp*max( temp1, temp2 ) )
2661*
2662 1680 CONTINUE
2663*
2664*
2665 CALL slacpy( ' ', n, n, a, lda, v, ldu )
2666 ntest = ntest + 1
2667 srnamt = 'SSYEVR'
2668 CALL ssyevr( 'V', 'A', uplo, n, a, ldu, vl, vu, il, iu,
2669 \$ abstol, m, wa1, z, ldu, iwork, work, lwork,
2670 \$ iwork(2*n+1), liwork-2*n, iinfo )
2671 IF( iinfo.NE.0 ) THEN
2672 WRITE( nounit, fmt = 9999 )'SSYEVR(V,A,' // uplo //
2673 \$ ')', iinfo, n, jtype, ioldsd
2674 info = abs( iinfo )
2675 IF( iinfo.LT.0 ) THEN
2676 RETURN
2677 ELSE
2678 result( ntest ) = ulpinv
2679 result( ntest+1 ) = ulpinv
2680 result( ntest+2 ) = ulpinv
2681 GO TO 1700
2682 END IF
2683 END IF
2684*
2685* Do tests 70 and 71 (or ... )
2686*
2687 CALL slacpy( ' ', n, n, v, ldu, a, lda )
2688*
2689 CALL ssyt21( 1, uplo, n, 0, a, ldu, wa1, d2, z, ldu, v,
2690 \$ ldu, tau, work, result( ntest ) )
2691*
2692 ntest = ntest + 2
2693 srnamt = 'SSYEVR_2STAGE'
2694 CALL ssyevr_2stage( 'N', 'A', uplo, n, a, ldu, vl, vu,
2695 \$ il, iu, abstol, m2, wa2, z, ldu, iwork,
2696 \$ work, lwork, iwork(2*n+1), liwork-2*n,
2697 \$ iinfo )
2698 IF( iinfo.NE.0 ) THEN
2699 WRITE( nounit, fmt = 9999 )
2700 \$ 'SSYEVR_2STAGE(N,A,' // uplo //
2701 \$ ')', iinfo, n, jtype, ioldsd
2702 info = abs( iinfo )
2703 IF( iinfo.LT.0 ) THEN
2704 RETURN
2705 ELSE
2706 result( ntest ) = ulpinv
2707 GO TO 1700
2708 END IF
2709 END IF
2710*
2711* Do test 72 (or ... )
2712*
2713 temp1 = zero
2714 temp2 = zero
2715 DO 1690 j = 1, n
2716 temp1 = max( temp1, abs( wa1( j ) ), abs( wa2( j ) ) )
2717 temp2 = max( temp2, abs( wa1( j )-wa2( j ) ) )
2718 1690 CONTINUE
2719 result( ntest ) = temp2 / max( unfl,
2720 \$ ulp*max( temp1, temp2 ) )
2721*
2722 1700 CONTINUE
2723*
2724 ntest = ntest + 1
2725 CALL slacpy( ' ', n, n, v, ldu, a, lda )
2726 srnamt = 'SSYEVR'
2727 CALL ssyevr( 'V', 'I', uplo, n, a, ldu, vl, vu, il, iu,
2728 \$ abstol, m2, wa2, z, ldu, iwork, work, lwork,
2729 \$ iwork(2*n+1), liwork-2*n, iinfo )
2730 IF( iinfo.NE.0 ) THEN
2731 WRITE( nounit, fmt = 9999 )'SSYEVR(V,I,' // uplo //
2732 \$ ')', iinfo, n, jtype, ioldsd
2733 info = abs( iinfo )
2734 IF( iinfo.LT.0 ) THEN
2735 RETURN
2736 ELSE
2737 result( ntest ) = ulpinv
2738 result( ntest+1 ) = ulpinv
2739 result( ntest+2 ) = ulpinv
2740 GO TO 1710
2741 END IF
2742 END IF
2743*
2744* Do tests 73 and 74 (or +54)
2745*
2746 CALL slacpy( ' ', n, n, v, ldu, a, lda )
2747*
2748 CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
2749 \$ v, ldu, tau, work, result( ntest ) )
2750*
2751 ntest = ntest + 2
2752 CALL slacpy( ' ', n, n, v, ldu, a, lda )
2753 srnamt = 'SSYEVR_2STAGE'
2754 CALL ssyevr_2stage( 'N', 'I', uplo, n, a, ldu, vl, vu,
2755 \$ il, iu, abstol, m3, wa3, z, ldu, iwork,
2756 \$ work, lwork, iwork(2*n+1), liwork-2*n,
2757 \$ iinfo )
2758 IF( iinfo.NE.0 ) THEN
2759 WRITE( nounit, fmt = 9999 )
2760 \$ 'SSYEVR_2STAGE(N,I,' // uplo //
2761 \$ ')', iinfo, n, jtype, ioldsd
2762 info = abs( iinfo )
2763 IF( iinfo.LT.0 ) THEN
2764 RETURN
2765 ELSE
2766 result( ntest ) = ulpinv
2767 GO TO 1710
2768 END IF
2769 END IF
2770*
2771* Do test 75 (or +54)
2772*
2773 temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
2774 temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
2775 result( ntest ) = ( temp1+temp2 ) /
2776 \$ max( unfl, ulp*temp3 )
2777 1710 CONTINUE
2778*
2779 ntest = ntest + 1
2780 CALL slacpy( ' ', n, n, v, ldu, a, lda )
2781 srnamt = 'SSYEVR'
2782 CALL ssyevr( 'V', 'V', uplo, n, a, ldu, vl, vu, il, iu,
2783 \$ abstol, m2, wa2, z, ldu, iwork, work, lwork,
2784 \$ iwork(2*n+1), liwork-2*n, iinfo )
2785 IF( iinfo.NE.0 ) THEN
2786 WRITE( nounit, fmt = 9999 )'SSYEVR(V,V,' // uplo //
2787 \$ ')', iinfo, n, jtype, ioldsd
2788 info = abs( iinfo )
2789 IF( iinfo.LT.0 ) THEN
2790 RETURN
2791 ELSE
2792 result( ntest ) = ulpinv
2793 result( ntest+1 ) = ulpinv
2794 result( ntest+2 ) = ulpinv
2795 GO TO 700
2796 END IF
2797 END IF
2798*
2799* Do tests 76 and 77 (or +54)
2800*
2801 CALL slacpy( ' ', n, n, v, ldu, a, lda )
2802*
2803 CALL ssyt22( 1, uplo, n, m2, 0, a, ldu, wa2, d2, z, ldu,
2804 \$ v, ldu, tau, work, result( ntest ) )
2805*
2806 ntest = ntest + 2
2807 CALL slacpy( ' ', n, n, v, ldu, a, lda )
2808 srnamt = 'SSYEVR_2STAGE'
2809 CALL ssyevr_2stage( 'N', 'V', uplo, n, a, ldu, vl, vu,
2810 \$ il, iu, abstol, m3, wa3, z, ldu, iwork,
2811 \$ work, lwork, iwork(2*n+1), liwork-2*n,
2812 \$ iinfo )
2813 IF( iinfo.NE.0 ) THEN
2814 WRITE( nounit, fmt = 9999 )
2815 \$ 'SSYEVR_2STAGE(N,V,' // uplo //
2816 \$ ')', iinfo, n, jtype, ioldsd
2817 info = abs( iinfo )
2818 IF( iinfo.LT.0 ) THEN
2819 RETURN
2820 ELSE
2821 result( ntest ) = ulpinv
2822 GO TO 700
2823 END IF
2824 END IF
2825*
2826 IF( m3.EQ.0 .AND. n.GT.0 ) THEN
2827 result( ntest ) = ulpinv
2828 GO TO 700
2829 END IF
2830*
2831* Do test 78 (or +54)
2832*
2833 temp1 = ssxt1( 1, wa2, m2, wa3, m3, abstol, ulp, unfl )
2834 temp2 = ssxt1( 1, wa3, m3, wa2, m2, abstol, ulp, unfl )
2835 IF( n.GT.0 ) THEN
2836 temp3 = max( abs( wa1( 1 ) ), abs( wa1( n ) ) )
2837 ELSE
2838 temp3 = zero
2839 END IF
2840 result( ntest ) = ( temp1+temp2 ) /
2841 \$ max( unfl, temp3*ulp )
2842*
2843 CALL slacpy( ' ', n, n, v, ldu, a, lda )
2844*
2845 1720 CONTINUE
2846*
2847* End of Loop -- Check for RESULT(j) > THRESH
2848*
2849 ntestt = ntestt + ntest
2850*
2851 CALL slafts( 'SST', n, n, jtype, ntest, result, ioldsd,
2852 \$ thresh, nounit, nerrs )
2853*
2854 1730 CONTINUE
2855 1740 CONTINUE
2856*
2857* Summary
2858*
2859 CALL alasvm( 'SST', nounit, nerrs, ntestt, 0 )
2860*
2861 9999 FORMAT( ' SDRVST2STG: ', a, ' returned INFO=', i6, '.', / 9x,
2862 \$ 'N=', i6, ', JTYPE=', i6, ', ISEED=(', 3( i5, ',' ), i5, ')' )
2863*
2864 RETURN
2865*
2866* End of SDRVST2STG
2867*
subroutine alasvm(type, nout, nfail, nrun, nerrs)
ALASVM
Definition alasvm.f:73
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ssbev_2stage(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, info)
SSBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER m...
subroutine ssbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)
SSBEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Definition ssbev.f:146
subroutine ssbevd_2stage(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
SSBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER ...
subroutine ssbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
SSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition ssbevd.f:187
subroutine ssbevx_2stage(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)
SSBEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER ...
subroutine ssbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)
SSBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition ssbevx.f:265
subroutine ssyev_2stage(jobz, uplo, n, a, lda, w, work, lwork, info)
SSYEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matr...
subroutine ssyev(jobz, uplo, n, a, lda, w, work, lwork, info)
SSYEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Definition ssyev.f:132
subroutine ssyevd_2stage(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
SSYEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY mat...
subroutine ssyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
SSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Definition ssyevd.f:176
subroutine ssyevr_2stage(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)
SSYEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY mat...
subroutine ssyevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)
SSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Definition ssyevr.f:336
subroutine ssyevx_2stage(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)
SSYEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY mat...
subroutine ssyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)
SSYEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Definition ssyevx.f:253
subroutine ssytrd_2stage(vect, uplo, n, a, lda, d, e, tau, hous2, lhous2, work, lwork, info)
SSYTRD_2STAGE
subroutine ssytrd_sb2st(stage1, vect, uplo, n, kd, ab, ldab, d, e, hous, lhous, work, lwork, info)
SSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric tridiagonal form T
subroutine ssytrd_sy2sb(uplo, n, kd, a, lda, ab, ldab, tau, work, lwork, info)
SSYTRD_SY2SB
subroutine sspev(jobz, uplo, n, ap, w, z, ldz, work, info)
SSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Definition sspev.f:130
subroutine sspevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)
SSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition sspevd.f:172
subroutine sspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)
SSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition sspevx.f:234
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:103
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:110
subroutine sstev(jobz, n, d, e, z, ldz, work, info)
SSTEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Definition sstev.f:116
subroutine sstevd(jobz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
SSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition sstevd.f:157
subroutine sstevr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)
SSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition sstevr.f:306
subroutine sstevx(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)
SSTEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition sstevx.f:227
subroutine slafts(type, m, n, imat, ntests, result, iseed, thresh, iounit, ie)
SLAFTS
Definition slafts.f:99
real function slarnd(idist, iseed)
SLARND
Definition slarnd.f:73
subroutine slatmr(m, n, dist, iseed, sym, d, mode, cond, dmax, rsign, grade, dl, model, condl, dr, moder, condr, pivtng, ipivot, kl, ku, sparse, anorm, pack, a, lda, iwork, info)
SLATMR
Definition slatmr.f:471
subroutine slatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
SLATMS
Definition slatms.f:321
subroutine sstt21(n, kband, ad, ae, sd, se, u, ldu, work, result)
SSTT21
Definition sstt21.f:127
subroutine sstt22(n, m, kband, ad, ae, sd, se, u, ldu, work, ldwork, result)
SSTT22
Definition sstt22.f:139
real function ssxt1(ijob, d1, n1, d2, n2, abstol, ulp, unfl)
SSXT1
Definition ssxt1.f:106
subroutine ssyt21(itype, uplo, n, kband, a, lda, d, e, u, ldu, v, ldv, tau, work, result)
SSYT21
Definition ssyt21.f:207
subroutine ssyt22(itype, uplo, n, m, kband, a, lda, d, e, u, ldu, v, ldv, tau, work, result)
SSYT22
Definition ssyt22.f:157
Here is the call graph for this function:
Here is the caller graph for this function: