LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sspev()

subroutine sspev ( character jobz,
character uplo,
integer n,
real, dimension( * ) ap,
real, dimension( * ) w,
real, dimension( ldz, * ) z,
integer ldz,
real, dimension( * ) work,
integer info )

SSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Download SSPEV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSPEV computes all the eigenvalues and, optionally, eigenvectors of a
!> real symmetric matrix A in packed storage.
!> 
Parameters
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in,out]AP
!>          AP is REAL array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the symmetric matrix
!>          A, packed columnwise in a linear array.  The j-th column of A
!>          is stored in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
!>
!>          On exit, AP is overwritten by values generated during the
!>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
!>          and first superdiagonal of the tridiagonal matrix T overwrite
!>          the corresponding elements of A, and if UPLO = 'L', the
!>          diagonal and first subdiagonal of T overwrite the
!>          corresponding elements of A.
!> 
[out]W
!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 
[out]Z
!>          Z is REAL array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
!>          eigenvectors of the matrix A, with the i-th column of Z
!>          holding the eigenvector associated with W(i).
!>          If JOBZ = 'N', then Z is not referenced.
!> 
[in]LDZ
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 
[out]WORK
!>          WORK is REAL array, dimension (3*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  if INFO = i, the algorithm failed to converge; i
!>                off-diagonal elements of an intermediate tridiagonal
!>                form did not converge to zero.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 127 of file sspev.f.

128*
129* -- LAPACK driver routine --
130* -- LAPACK is a software package provided by Univ. of Tennessee, --
131* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
132*
133* .. Scalar Arguments ..
134 CHARACTER JOBZ, UPLO
135 INTEGER INFO, LDZ, N
136* ..
137* .. Array Arguments ..
138 REAL AP( * ), W( * ), WORK( * ), Z( LDZ, * )
139* ..
140*
141* =====================================================================
142*
143* .. Parameters ..
144 REAL ZERO, ONE
145 parameter( zero = 0.0e0, one = 1.0e0 )
146* ..
147* .. Local Scalars ..
148 LOGICAL WANTZ
149 INTEGER IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE
150 REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
151 $ SMLNUM
152* ..
153* .. External Functions ..
154 LOGICAL LSAME
155 REAL SLAMCH, SLANSP
156 EXTERNAL lsame, slamch, slansp
157* ..
158* .. External Subroutines ..
159 EXTERNAL sopgtr, sscal, ssptrd, ssteqr, ssterf,
160 $ xerbla
161* ..
162* .. Intrinsic Functions ..
163 INTRINSIC sqrt
164* ..
165* .. Executable Statements ..
166*
167* Test the input parameters.
168*
169 wantz = lsame( jobz, 'V' )
170*
171 info = 0
172 IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
173 info = -1
174 ELSE IF( .NOT.( lsame( uplo, 'U' ) .OR.
175 $ lsame( uplo, 'L' ) ) )
176 $ THEN
177 info = -2
178 ELSE IF( n.LT.0 ) THEN
179 info = -3
180 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
181 info = -7
182 END IF
183*
184 IF( info.NE.0 ) THEN
185 CALL xerbla( 'SSPEV ', -info )
186 RETURN
187 END IF
188*
189* Quick return if possible
190*
191 IF( n.EQ.0 )
192 $ RETURN
193*
194 IF( n.EQ.1 ) THEN
195 w( 1 ) = ap( 1 )
196 IF( wantz )
197 $ z( 1, 1 ) = one
198 RETURN
199 END IF
200*
201* Get machine constants.
202*
203 safmin = slamch( 'Safe minimum' )
204 eps = slamch( 'Precision' )
205 smlnum = safmin / eps
206 bignum = one / smlnum
207 rmin = sqrt( smlnum )
208 rmax = sqrt( bignum )
209*
210* Scale matrix to allowable range, if necessary.
211*
212 anrm = slansp( 'M', uplo, n, ap, work )
213 iscale = 0
214 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
215 iscale = 1
216 sigma = rmin / anrm
217 ELSE IF( anrm.GT.rmax ) THEN
218 iscale = 1
219 sigma = rmax / anrm
220 END IF
221 IF( iscale.EQ.1 ) THEN
222 CALL sscal( ( n*( n+1 ) ) / 2, sigma, ap, 1 )
223 END IF
224*
225* Call SSPTRD to reduce symmetric packed matrix to tridiagonal form.
226*
227 inde = 1
228 indtau = inde + n
229 CALL ssptrd( uplo, n, ap, w, work( inde ), work( indtau ),
230 $ iinfo )
231*
232* For eigenvalues only, call SSTERF. For eigenvectors, first call
233* SOPGTR to generate the orthogonal matrix, then call SSTEQR.
234*
235 IF( .NOT.wantz ) THEN
236 CALL ssterf( n, w, work( inde ), info )
237 ELSE
238 indwrk = indtau + n
239 CALL sopgtr( uplo, n, ap, work( indtau ), z, ldz,
240 $ work( indwrk ), iinfo )
241 CALL ssteqr( jobz, n, w, work( inde ), z, ldz,
242 $ work( indtau ),
243 $ info )
244 END IF
245*
246* If matrix was scaled, then rescale eigenvalues appropriately.
247*
248 IF( iscale.EQ.1 ) THEN
249 IF( info.EQ.0 ) THEN
250 imax = n
251 ELSE
252 imax = info - 1
253 END IF
254 CALL sscal( imax, one / sigma, w, 1 )
255 END IF
256*
257 RETURN
258*
259* End of SSPEV
260*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ssptrd(uplo, n, ap, d, e, tau, info)
SSPTRD
Definition ssptrd.f:148
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slansp(norm, uplo, n, ap, work)
SLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition slansp.f:112
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine ssteqr(compz, n, d, e, z, ldz, work, info)
SSTEQR
Definition ssteqr.f:129
subroutine ssterf(n, d, e, info)
SSTERF
Definition ssterf.f:84
subroutine sopgtr(uplo, n, ap, tau, q, ldq, work, info)
SOPGTR
Definition sopgtr.f:112
Here is the call graph for this function:
Here is the caller graph for this function: