LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
ssbevd.f
Go to the documentation of this file.
1*> \brief <b> SSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SSBEVD + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbevd.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbevd.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbevd.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
20* LWORK, IWORK, LIWORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER JOBZ, UPLO
24* INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
25* ..
26* .. Array Arguments ..
27* INTEGER IWORK( * )
28* REAL AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> SSBEVD computes all the eigenvalues and, optionally, eigenvectors of
38*> a real symmetric band matrix A. If eigenvectors are desired, it uses
39*> a divide and conquer algorithm.
40*>
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] JOBZ
47*> \verbatim
48*> JOBZ is CHARACTER*1
49*> = 'N': Compute eigenvalues only;
50*> = 'V': Compute eigenvalues and eigenvectors.
51*> \endverbatim
52*>
53*> \param[in] UPLO
54*> \verbatim
55*> UPLO is CHARACTER*1
56*> = 'U': Upper triangle of A is stored;
57*> = 'L': Lower triangle of A is stored.
58*> \endverbatim
59*>
60*> \param[in] N
61*> \verbatim
62*> N is INTEGER
63*> The order of the matrix A. N >= 0.
64*> \endverbatim
65*>
66*> \param[in] KD
67*> \verbatim
68*> KD is INTEGER
69*> The number of superdiagonals of the matrix A if UPLO = 'U',
70*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
71*> \endverbatim
72*>
73*> \param[in,out] AB
74*> \verbatim
75*> AB is REAL array, dimension (LDAB, N)
76*> On entry, the upper or lower triangle of the symmetric band
77*> matrix A, stored in the first KD+1 rows of the array. The
78*> j-th column of A is stored in the j-th column of the array AB
79*> as follows:
80*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
81*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
82*>
83*> On exit, AB is overwritten by values generated during the
84*> reduction to tridiagonal form. If UPLO = 'U', the first
85*> superdiagonal and the diagonal of the tridiagonal matrix T
86*> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
87*> the diagonal and first subdiagonal of T are returned in the
88*> first two rows of AB.
89*> \endverbatim
90*>
91*> \param[in] LDAB
92*> \verbatim
93*> LDAB is INTEGER
94*> The leading dimension of the array AB. LDAB >= KD + 1.
95*> \endverbatim
96*>
97*> \param[out] W
98*> \verbatim
99*> W is REAL array, dimension (N)
100*> If INFO = 0, the eigenvalues in ascending order.
101*> \endverbatim
102*>
103*> \param[out] Z
104*> \verbatim
105*> Z is REAL array, dimension (LDZ, N)
106*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
107*> eigenvectors of the matrix A, with the i-th column of Z
108*> holding the eigenvector associated with W(i).
109*> If JOBZ = 'N', then Z is not referenced.
110*> \endverbatim
111*>
112*> \param[in] LDZ
113*> \verbatim
114*> LDZ is INTEGER
115*> The leading dimension of the array Z. LDZ >= 1, and if
116*> JOBZ = 'V', LDZ >= max(1,N).
117*> \endverbatim
118*>
119*> \param[out] WORK
120*> \verbatim
121*> WORK is REAL array,
122*> dimension (LWORK)
123*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
124*> \endverbatim
125*>
126*> \param[in] LWORK
127*> \verbatim
128*> LWORK is INTEGER
129*> The dimension of the array WORK.
130*> IF N <= 1, LWORK must be at least 1.
131*> If JOBZ = 'N' and N > 2, LWORK must be at least 2*N.
132*> If JOBZ = 'V' and N > 2, LWORK must be at least
133*> ( 1 + 5*N + 2*N**2 ).
134*>
135*> If LWORK = -1, then a workspace query is assumed; the routine
136*> only calculates the optimal sizes of the WORK and IWORK
137*> arrays, returns these values as the first entries of the WORK
138*> and IWORK arrays, and no error message related to LWORK or
139*> LIWORK is issued by XERBLA.
140*> \endverbatim
141*>
142*> \param[out] IWORK
143*> \verbatim
144*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
145*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
146*> \endverbatim
147*>
148*> \param[in] LIWORK
149*> \verbatim
150*> LIWORK is INTEGER
151*> The dimension of the array IWORK.
152*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
153*> If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
154*>
155*> If LIWORK = -1, then a workspace query is assumed; the
156*> routine only calculates the optimal sizes of the WORK and
157*> IWORK arrays, returns these values as the first entries of
158*> the WORK and IWORK arrays, and no error message related to
159*> LWORK or LIWORK is issued by XERBLA.
160*> \endverbatim
161*>
162*> \param[out] INFO
163*> \verbatim
164*> INFO is INTEGER
165*> = 0: successful exit
166*> < 0: if INFO = -i, the i-th argument had an illegal value
167*> > 0: if INFO = i, the algorithm failed to converge; i
168*> off-diagonal elements of an intermediate tridiagonal
169*> form did not converge to zero.
170*> \endverbatim
171*
172* Authors:
173* ========
174*
175*> \author Univ. of Tennessee
176*> \author Univ. of California Berkeley
177*> \author Univ. of Colorado Denver
178*> \author NAG Ltd.
179*
180*> \ingroup hbevd
181*
182* =====================================================================
183 SUBROUTINE ssbevd( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
184 $ WORK,
185 $ LWORK, IWORK, LIWORK, INFO )
186*
187* -- LAPACK driver routine --
188* -- LAPACK is a software package provided by Univ. of Tennessee, --
189* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
190*
191* .. Scalar Arguments ..
192 CHARACTER JOBZ, UPLO
193 INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
194* ..
195* .. Array Arguments ..
196 INTEGER IWORK( * )
197 REAL AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
198* ..
199*
200* =====================================================================
201*
202* .. Parameters ..
203 REAL ZERO, ONE
204 PARAMETER ( ZERO = 0.0e+0, one = 1.0e+0 )
205* ..
206* .. Local Scalars ..
207 LOGICAL LOWER, LQUERY, WANTZ
208 INTEGER IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
209 $ llwrk2, lwmin
210 REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
211 $ SMLNUM
212* ..
213* .. External Functions ..
214 LOGICAL LSAME
215 REAL SLAMCH, SLANSB, SROUNDUP_LWORK
216 EXTERNAL lsame, slamch, slansb,
217 $ sroundup_lwork
218* ..
219* .. External Subroutines ..
220 EXTERNAL sgemm, slacpy, slascl, ssbtrd, sscal,
221 $ sstedc,
222 $ ssterf, xerbla
223* ..
224* .. Intrinsic Functions ..
225 INTRINSIC sqrt
226* ..
227* .. Executable Statements ..
228*
229* Test the input parameters.
230*
231 wantz = lsame( jobz, 'V' )
232 lower = lsame( uplo, 'L' )
233 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
234*
235 info = 0
236 IF( n.LE.1 ) THEN
237 liwmin = 1
238 lwmin = 1
239 ELSE
240 IF( wantz ) THEN
241 liwmin = 3 + 5*n
242 lwmin = 1 + 5*n + 2*n**2
243 ELSE
244 liwmin = 1
245 lwmin = 2*n
246 END IF
247 END IF
248 IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
249 info = -1
250 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
251 info = -2
252 ELSE IF( n.LT.0 ) THEN
253 info = -3
254 ELSE IF( kd.LT.0 ) THEN
255 info = -4
256 ELSE IF( ldab.LT.kd+1 ) THEN
257 info = -6
258 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
259 info = -9
260 END IF
261*
262 IF( info.EQ.0 ) THEN
263 work( 1 ) = sroundup_lwork(lwmin)
264 iwork( 1 ) = liwmin
265*
266 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
267 info = -11
268 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
269 info = -13
270 END IF
271 END IF
272*
273 IF( info.NE.0 ) THEN
274 CALL xerbla( 'SSBEVD', -info )
275 RETURN
276 ELSE IF( lquery ) THEN
277 RETURN
278 END IF
279*
280* Quick return if possible
281*
282 IF( n.EQ.0 )
283 $ RETURN
284*
285 IF( n.EQ.1 ) THEN
286 w( 1 ) = ab( 1, 1 )
287 IF( wantz )
288 $ z( 1, 1 ) = one
289 RETURN
290 END IF
291*
292* Get machine constants.
293*
294 safmin = slamch( 'Safe minimum' )
295 eps = slamch( 'Precision' )
296 smlnum = safmin / eps
297 bignum = one / smlnum
298 rmin = sqrt( smlnum )
299 rmax = sqrt( bignum )
300*
301* Scale matrix to allowable range, if necessary.
302*
303 anrm = slansb( 'M', uplo, n, kd, ab, ldab, work )
304 iscale = 0
305 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
306 iscale = 1
307 sigma = rmin / anrm
308 ELSE IF( anrm.GT.rmax ) THEN
309 iscale = 1
310 sigma = rmax / anrm
311 END IF
312 IF( iscale.EQ.1 ) THEN
313 IF( lower ) THEN
314 CALL slascl( 'B', kd, kd, one, sigma, n, n, ab, ldab,
315 $ info )
316 ELSE
317 CALL slascl( 'Q', kd, kd, one, sigma, n, n, ab, ldab,
318 $ info )
319 END IF
320 END IF
321*
322* Call SSBTRD to reduce symmetric band matrix to tridiagonal form.
323*
324 inde = 1
325 indwrk = inde + n
326 indwk2 = indwrk + n*n
327 llwrk2 = lwork - indwk2 + 1
328 CALL ssbtrd( jobz, uplo, n, kd, ab, ldab, w, work( inde ), z,
329 $ ldz,
330 $ work( indwrk ), iinfo )
331*
332* For eigenvalues only, call SSTERF. For eigenvectors, call SSTEDC.
333*
334 IF( .NOT.wantz ) THEN
335 CALL ssterf( n, w, work( inde ), info )
336 ELSE
337 CALL sstedc( 'I', n, w, work( inde ), work( indwrk ), n,
338 $ work( indwk2 ), llwrk2, iwork, liwork, info )
339 CALL sgemm( 'N', 'N', n, n, n, one, z, ldz, work( indwrk ),
340 $ n,
341 $ zero, work( indwk2 ), n )
342 CALL slacpy( 'A', n, n, work( indwk2 ), n, z, ldz )
343 END IF
344*
345* If matrix was scaled, then rescale eigenvalues appropriately.
346*
347 IF( iscale.EQ.1 )
348 $ CALL sscal( n, one / sigma, w, 1 )
349*
350 work( 1 ) = sroundup_lwork(lwmin)
351 iwork( 1 ) = liwmin
352 RETURN
353*
354* End of SSBEVD
355*
356 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
SGEMM
Definition sgemm.f:188
subroutine ssbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
SSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition ssbevd.f:186
subroutine ssbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
SSBTRD
Definition ssbtrd.f:161
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
subroutine slascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition slascl.f:142
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
SSTEDC
Definition sstedc.f:180
subroutine ssterf(n, d, e, info)
SSTERF
Definition ssterf.f:84