LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
ssbevd_2stage.f
Go to the documentation of this file.
1*> \brief <b> SSBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3* @generated from dsbevd_2stage.f, fortran d -> s, Sat Nov 5 23:58:03 2016
4*
5* =========== DOCUMENTATION ===========
6*
7* Online html documentation available at
8* http://www.netlib.org/lapack/explore-html/
9*
10*> \htmlonly
11*> Download SSBEVD_2STAGE + dependencies
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbevd_2stage.f">
13*> [TGZ]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbevd_2stage.f">
15*> [ZIP]</a>
16*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbevd_2stage.f">
17*> [TXT]</a>
18*> \endhtmlonly
19*
20* Definition:
21* ===========
22*
23* SUBROUTINE SSBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
24* WORK, LWORK, IWORK, LIWORK, INFO )
25*
26* IMPLICIT NONE
27*
28* .. Scalar Arguments ..
29* CHARACTER JOBZ, UPLO
30* INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
31* ..
32* .. Array Arguments ..
33* INTEGER IWORK( * )
34* REAL AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
35* ..
36*
37*
38*> \par Purpose:
39* =============
40*>
41*> \verbatim
42*>
43*> SSBEVD_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
44*> a real symmetric band matrix A using the 2stage technique for
45*> the reduction to tridiagonal. If eigenvectors are desired, it uses
46*> a divide and conquer algorithm.
47*>
48*> \endverbatim
49*
50* Arguments:
51* ==========
52*
53*> \param[in] JOBZ
54*> \verbatim
55*> JOBZ is CHARACTER*1
56*> = 'N': Compute eigenvalues only;
57*> = 'V': Compute eigenvalues and eigenvectors.
58*> Not available in this release.
59*> \endverbatim
60*>
61*> \param[in] UPLO
62*> \verbatim
63*> UPLO is CHARACTER*1
64*> = 'U': Upper triangle of A is stored;
65*> = 'L': Lower triangle of A is stored.
66*> \endverbatim
67*>
68*> \param[in] N
69*> \verbatim
70*> N is INTEGER
71*> The order of the matrix A. N >= 0.
72*> \endverbatim
73*>
74*> \param[in] KD
75*> \verbatim
76*> KD is INTEGER
77*> The number of superdiagonals of the matrix A if UPLO = 'U',
78*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
79*> \endverbatim
80*>
81*> \param[in,out] AB
82*> \verbatim
83*> AB is REAL array, dimension (LDAB, N)
84*> On entry, the upper or lower triangle of the symmetric band
85*> matrix A, stored in the first KD+1 rows of the array. The
86*> j-th column of A is stored in the j-th column of the array AB
87*> as follows:
88*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
89*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
90*>
91*> On exit, AB is overwritten by values generated during the
92*> reduction to tridiagonal form. If UPLO = 'U', the first
93*> superdiagonal and the diagonal of the tridiagonal matrix T
94*> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
95*> the diagonal and first subdiagonal of T are returned in the
96*> first two rows of AB.
97*> \endverbatim
98*>
99*> \param[in] LDAB
100*> \verbatim
101*> LDAB is INTEGER
102*> The leading dimension of the array AB. LDAB >= KD + 1.
103*> \endverbatim
104*>
105*> \param[out] W
106*> \verbatim
107*> W is REAL array, dimension (N)
108*> If INFO = 0, the eigenvalues in ascending order.
109*> \endverbatim
110*>
111*> \param[out] Z
112*> \verbatim
113*> Z is REAL array, dimension (LDZ, N)
114*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
115*> eigenvectors of the matrix A, with the i-th column of Z
116*> holding the eigenvector associated with W(i).
117*> If JOBZ = 'N', then Z is not referenced.
118*> \endverbatim
119*>
120*> \param[in] LDZ
121*> \verbatim
122*> LDZ is INTEGER
123*> The leading dimension of the array Z. LDZ >= 1, and if
124*> JOBZ = 'V', LDZ >= max(1,N).
125*> \endverbatim
126*>
127*> \param[out] WORK
128*> \verbatim
129*> WORK is REAL array, dimension LWORK
130*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
131*> \endverbatim
132*>
133*> \param[in] LWORK
134*> \verbatim
135*> LWORK is INTEGER
136*> The length of the array WORK. LWORK >= 1, when N <= 1;
137*> otherwise
138*> If JOBZ = 'N' and N > 1, LWORK must be queried.
139*> LWORK = MAX(1, dimension) where
140*> dimension = (2KD+1)*N + KD*NTHREADS + N
141*> where KD is the size of the band.
142*> NTHREADS is the number of threads used when
143*> openMP compilation is enabled, otherwise =1.
144*> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
145*>
146*> If LWORK = -1, then a workspace query is assumed; the routine
147*> only calculates the optimal sizes of the WORK and IWORK
148*> arrays, returns these values as the first entries of the WORK
149*> and IWORK arrays, and no error message related to LWORK or
150*> LIWORK is issued by XERBLA.
151*> \endverbatim
152*>
153*> \param[out] IWORK
154*> \verbatim
155*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
156*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
157*> \endverbatim
158*>
159*> \param[in] LIWORK
160*> \verbatim
161*> LIWORK is INTEGER
162*> The dimension of the array IWORK.
163*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
164*> If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
165*>
166*> If LIWORK = -1, then a workspace query is assumed; the
167*> routine only calculates the optimal sizes of the WORK and
168*> IWORK arrays, returns these values as the first entries of
169*> the WORK and IWORK arrays, and no error message related to
170*> LWORK or LIWORK is issued by XERBLA.
171*> \endverbatim
172*>
173*> \param[out] INFO
174*> \verbatim
175*> INFO is INTEGER
176*> = 0: successful exit
177*> < 0: if INFO = -i, the i-th argument had an illegal value
178*> > 0: if INFO = i, the algorithm failed to converge; i
179*> off-diagonal elements of an intermediate tridiagonal
180*> form did not converge to zero.
181*> \endverbatim
182*
183* Authors:
184* ========
185*
186*> \author Univ. of Tennessee
187*> \author Univ. of California Berkeley
188*> \author Univ. of Colorado Denver
189*> \author NAG Ltd.
190*
191*> \ingroup hbevd_2stage
192*
193*> \par Further Details:
194* =====================
195*>
196*> \verbatim
197*>
198*> All details about the 2stage techniques are available in:
199*>
200*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
201*> Parallel reduction to condensed forms for symmetric eigenvalue problems
202*> using aggregated fine-grained and memory-aware kernels. In Proceedings
203*> of 2011 International Conference for High Performance Computing,
204*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
205*> Article 8 , 11 pages.
206*> http://doi.acm.org/10.1145/2063384.2063394
207*>
208*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
209*> An improved parallel singular value algorithm and its implementation
210*> for multicore hardware, In Proceedings of 2013 International Conference
211*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
212*> Denver, Colorado, USA, 2013.
213*> Article 90, 12 pages.
214*> http://doi.acm.org/10.1145/2503210.2503292
215*>
216*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
217*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
218*> calculations based on fine-grained memory aware tasks.
219*> International Journal of High Performance Computing Applications.
220*> Volume 28 Issue 2, Pages 196-209, May 2014.
221*> http://hpc.sagepub.com/content/28/2/196
222*>
223*> \endverbatim
224*
225* =====================================================================
226 SUBROUTINE ssbevd_2stage( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
227 $ WORK, LWORK, IWORK, LIWORK, INFO )
228*
229 IMPLICIT NONE
230*
231* -- LAPACK driver routine --
232* -- LAPACK is a software package provided by Univ. of Tennessee, --
233* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
234*
235* .. Scalar Arguments ..
236 CHARACTER JOBZ, UPLO
237 INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
238* ..
239* .. Array Arguments ..
240 INTEGER IWORK( * )
241 REAL AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
242* ..
243*
244* =====================================================================
245*
246* .. Parameters ..
247 REAL ZERO, ONE
248 parameter( zero = 0.0e+0, one = 1.0e+0 )
249* ..
250* .. Local Scalars ..
251 LOGICAL LOWER, LQUERY, WANTZ
252 INTEGER IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
253 $ llwork, lwmin, lhtrd, lwtrd, ib, indhous,
254 $ llwrk2
255 REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
256 $ smlnum
257* ..
258* .. External Functions ..
259 LOGICAL LSAME
260 INTEGER ILAENV2STAGE
261 REAL SLAMCH, SLANSB, SROUNDUP_LWORK
262 EXTERNAL lsame, slamch, slansb, ilaenv2stage,
263 $ sroundup_lwork
264* ..
265* .. External Subroutines ..
266 EXTERNAL sgemm, slacpy, slascl, sscal, sstedc,
268* ..
269* .. Intrinsic Functions ..
270 INTRINSIC sqrt
271* ..
272* .. Executable Statements ..
273*
274* Test the input parameters.
275*
276 wantz = lsame( jobz, 'V' )
277 lower = lsame( uplo, 'L' )
278 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
279*
280 info = 0
281 IF( n.LE.1 ) THEN
282 liwmin = 1
283 lwmin = 1
284 ELSE
285 ib = ilaenv2stage( 2, 'SSYTRD_SB2ST', jobz, n, kd, -1, -1 )
286 lhtrd = ilaenv2stage( 3, 'SSYTRD_SB2ST', jobz, n, kd, ib, -1 )
287 lwtrd = ilaenv2stage( 4, 'SSYTRD_SB2ST', jobz, n, kd, ib, -1 )
288 IF( wantz ) THEN
289 liwmin = 3 + 5*n
290 lwmin = 1 + 5*n + 2*n**2
291 ELSE
292 liwmin = 1
293 lwmin = max( 2*n, n+lhtrd+lwtrd )
294 END IF
295 END IF
296 IF( .NOT.( lsame( jobz, 'N' ) ) ) THEN
297 info = -1
298 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
299 info = -2
300 ELSE IF( n.LT.0 ) THEN
301 info = -3
302 ELSE IF( kd.LT.0 ) THEN
303 info = -4
304 ELSE IF( ldab.LT.kd+1 ) THEN
305 info = -6
306 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
307 info = -9
308 END IF
309*
310 IF( info.EQ.0 ) THEN
311 work( 1 ) = sroundup_lwork(lwmin)
312 iwork( 1 ) = liwmin
313*
314 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
315 info = -11
316 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
317 info = -13
318 END IF
319 END IF
320*
321 IF( info.NE.0 ) THEN
322 CALL xerbla( 'SSBEVD_2STAGE', -info )
323 RETURN
324 ELSE IF( lquery ) THEN
325 RETURN
326 END IF
327*
328* Quick return if possible
329*
330 IF( n.EQ.0 )
331 $ RETURN
332*
333 IF( n.EQ.1 ) THEN
334 w( 1 ) = ab( 1, 1 )
335 IF( wantz )
336 $ z( 1, 1 ) = one
337 RETURN
338 END IF
339*
340* Get machine constants.
341*
342 safmin = slamch( 'Safe minimum' )
343 eps = slamch( 'Precision' )
344 smlnum = safmin / eps
345 bignum = one / smlnum
346 rmin = sqrt( smlnum )
347 rmax = sqrt( bignum )
348*
349* Scale matrix to allowable range, if necessary.
350*
351 anrm = slansb( 'M', uplo, n, kd, ab, ldab, work )
352 iscale = 0
353 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
354 iscale = 1
355 sigma = rmin / anrm
356 ELSE IF( anrm.GT.rmax ) THEN
357 iscale = 1
358 sigma = rmax / anrm
359 END IF
360 IF( iscale.EQ.1 ) THEN
361 IF( lower ) THEN
362 CALL slascl( 'B', kd, kd, one, sigma, n, n, ab, ldab, info )
363 ELSE
364 CALL slascl( 'Q', kd, kd, one, sigma, n, n, ab, ldab, info )
365 END IF
366 END IF
367*
368* Call SSYTRD_SB2ST to reduce band symmetric matrix to tridiagonal form.
369*
370 inde = 1
371 indhous = inde + n
372 indwrk = indhous + lhtrd
373 llwork = lwork - indwrk + 1
374 indwk2 = indwrk + n*n
375 llwrk2 = lwork - indwk2 + 1
376*
377 CALL ssytrd_sb2st( "N", jobz, uplo, n, kd, ab, ldab, w,
378 $ work( inde ), work( indhous ), lhtrd,
379 $ work( indwrk ), llwork, iinfo )
380*
381* For eigenvalues only, call SSTERF. For eigenvectors, call SSTEDC.
382*
383 IF( .NOT.wantz ) THEN
384 CALL ssterf( n, w, work( inde ), info )
385 ELSE
386 CALL sstedc( 'I', n, w, work( inde ), work( indwrk ), n,
387 $ work( indwk2 ), llwrk2, iwork, liwork, info )
388 CALL sgemm( 'N', 'N', n, n, n, one, z, ldz, work( indwrk ), n,
389 $ zero, work( indwk2 ), n )
390 CALL slacpy( 'A', n, n, work( indwk2 ), n, z, ldz )
391 END IF
392*
393* If matrix was scaled, then rescale eigenvalues appropriately.
394*
395 IF( iscale.EQ.1 )
396 $ CALL sscal( n, one / sigma, w, 1 )
397*
398 work( 1 ) = sroundup_lwork(lwmin)
399 iwork( 1 ) = liwmin
400 RETURN
401*
402* End of SSBEVD_2STAGE
403*
404 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
SGEMM
Definition sgemm.f:188
subroutine ssbevd_2stage(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
SSBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER ...
subroutine ssytrd_sb2st(stage1, vect, uplo, n, kd, ab, ldab, d, e, hous, lhous, work, lwork, info)
SSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric tridiagonal form T
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:103
subroutine slascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition slascl.f:143
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
SSTEDC
Definition sstedc.f:182
subroutine ssterf(n, d, e, info)
SSTERF
Definition ssterf.f:86