LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
ssyevx.f
Go to the documentation of this file.
1*> \brief <b> SSYEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SSYEVX + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevx.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevx.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevx.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
20* ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK,
21* IFAIL, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER JOBZ, RANGE, UPLO
25* INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N
26* REAL ABSTOL, VL, VU
27* ..
28* .. Array Arguments ..
29* INTEGER IFAIL( * ), IWORK( * )
30* REAL A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> SSYEVX computes selected eigenvalues and, optionally, eigenvectors
40*> of a real symmetric matrix A. Eigenvalues and eigenvectors can be
41*> selected by specifying either a range of values or a range of indices
42*> for the desired eigenvalues.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] JOBZ
49*> \verbatim
50*> JOBZ is CHARACTER*1
51*> = 'N': Compute eigenvalues only;
52*> = 'V': Compute eigenvalues and eigenvectors.
53*> \endverbatim
54*>
55*> \param[in] RANGE
56*> \verbatim
57*> RANGE is CHARACTER*1
58*> = 'A': all eigenvalues will be found.
59*> = 'V': all eigenvalues in the half-open interval (VL,VU]
60*> will be found.
61*> = 'I': the IL-th through IU-th eigenvalues will be found.
62*> \endverbatim
63*>
64*> \param[in] UPLO
65*> \verbatim
66*> UPLO is CHARACTER*1
67*> = 'U': Upper triangle of A is stored;
68*> = 'L': Lower triangle of A is stored.
69*> \endverbatim
70*>
71*> \param[in] N
72*> \verbatim
73*> N is INTEGER
74*> The order of the matrix A. N >= 0.
75*> \endverbatim
76*>
77*> \param[in,out] A
78*> \verbatim
79*> A is REAL array, dimension (LDA, N)
80*> On entry, the symmetric matrix A. If UPLO = 'U', the
81*> leading N-by-N upper triangular part of A contains the
82*> upper triangular part of the matrix A. If UPLO = 'L',
83*> the leading N-by-N lower triangular part of A contains
84*> the lower triangular part of the matrix A.
85*> On exit, the lower triangle (if UPLO='L') or the upper
86*> triangle (if UPLO='U') of A, including the diagonal, is
87*> destroyed.
88*> \endverbatim
89*>
90*> \param[in] LDA
91*> \verbatim
92*> LDA is INTEGER
93*> The leading dimension of the array A. LDA >= max(1,N).
94*> \endverbatim
95*>
96*> \param[in] VL
97*> \verbatim
98*> VL is REAL
99*> If RANGE='V', the lower bound of the interval to
100*> be searched for eigenvalues. VL < VU.
101*> Not referenced if RANGE = 'A' or 'I'.
102*> \endverbatim
103*>
104*> \param[in] VU
105*> \verbatim
106*> VU is REAL
107*> If RANGE='V', the upper bound of the interval to
108*> be searched for eigenvalues. VL < VU.
109*> Not referenced if RANGE = 'A' or 'I'.
110*> \endverbatim
111*>
112*> \param[in] IL
113*> \verbatim
114*> IL is INTEGER
115*> If RANGE='I', the index of the
116*> smallest eigenvalue to be returned.
117*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
118*> Not referenced if RANGE = 'A' or 'V'.
119*> \endverbatim
120*>
121*> \param[in] IU
122*> \verbatim
123*> IU is INTEGER
124*> If RANGE='I', the index of the
125*> largest eigenvalue to be returned.
126*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
127*> Not referenced if RANGE = 'A' or 'V'.
128*> \endverbatim
129*>
130*> \param[in] ABSTOL
131*> \verbatim
132*> ABSTOL is REAL
133*> The absolute error tolerance for the eigenvalues.
134*> An approximate eigenvalue is accepted as converged
135*> when it is determined to lie in an interval [a,b]
136*> of width less than or equal to
137*>
138*> ABSTOL + EPS * max( |a|,|b| ) ,
139*>
140*> where EPS is the machine precision. If ABSTOL is less than
141*> or equal to zero, then EPS*|T| will be used in its place,
142*> where |T| is the 1-norm of the tridiagonal matrix obtained
143*> by reducing A to tridiagonal form.
144*>
145*> Eigenvalues will be computed most accurately when ABSTOL is
146*> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
147*> If this routine returns with INFO>0, indicating that some
148*> eigenvectors did not converge, try setting ABSTOL to
149*> 2*SLAMCH('S').
150*>
151*> See "Computing Small Singular Values of Bidiagonal Matrices
152*> with Guaranteed High Relative Accuracy," by Demmel and
153*> Kahan, LAPACK Working Note #3.
154*> \endverbatim
155*>
156*> \param[out] M
157*> \verbatim
158*> M is INTEGER
159*> The total number of eigenvalues found. 0 <= M <= N.
160*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
161*> \endverbatim
162*>
163*> \param[out] W
164*> \verbatim
165*> W is REAL array, dimension (N)
166*> On normal exit, the first M elements contain the selected
167*> eigenvalues in ascending order.
168*> \endverbatim
169*>
170*> \param[out] Z
171*> \verbatim
172*> Z is REAL array, dimension (LDZ, max(1,M))
173*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
174*> contain the orthonormal eigenvectors of the matrix A
175*> corresponding to the selected eigenvalues, with the i-th
176*> column of Z holding the eigenvector associated with W(i).
177*> If an eigenvector fails to converge, then that column of Z
178*> contains the latest approximation to the eigenvector, and the
179*> index of the eigenvector is returned in IFAIL.
180*> If JOBZ = 'N', then Z is not referenced.
181*> Note: the user must ensure that at least max(1,M) columns are
182*> supplied in the array Z; if RANGE = 'V', the exact value of M
183*> is not known in advance and an upper bound must be used.
184*> \endverbatim
185*>
186*> \param[in] LDZ
187*> \verbatim
188*> LDZ is INTEGER
189*> The leading dimension of the array Z. LDZ >= 1, and if
190*> JOBZ = 'V', LDZ >= max(1,N).
191*> \endverbatim
192*>
193*> \param[out] WORK
194*> \verbatim
195*> WORK is REAL array, dimension (MAX(1,LWORK))
196*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
197*> \endverbatim
198*>
199*> \param[in] LWORK
200*> \verbatim
201*> LWORK is INTEGER
202*> The length of the array WORK. LWORK >= 1, when N <= 1;
203*> otherwise 8*N.
204*> For optimal efficiency, LWORK >= (NB+3)*N,
205*> where NB is the max of the blocksize for SSYTRD and SORMTR
206*> returned by ILAENV.
207*>
208*> If LWORK = -1, then a workspace query is assumed; the routine
209*> only calculates the optimal size of the WORK array, returns
210*> this value as the first entry of the WORK array, and no error
211*> message related to LWORK is issued by XERBLA.
212*> \endverbatim
213*>
214*> \param[out] IWORK
215*> \verbatim
216*> IWORK is INTEGER array, dimension (5*N)
217*> \endverbatim
218*>
219*> \param[out] IFAIL
220*> \verbatim
221*> IFAIL is INTEGER array, dimension (N)
222*> If JOBZ = 'V', then if INFO = 0, the first M elements of
223*> IFAIL are zero. If INFO > 0, then IFAIL contains the
224*> indices of the eigenvectors that failed to converge.
225*> If JOBZ = 'N', then IFAIL is not referenced.
226*> \endverbatim
227*>
228*> \param[out] INFO
229*> \verbatim
230*> INFO is INTEGER
231*> = 0: successful exit
232*> < 0: if INFO = -i, the i-th argument had an illegal value
233*> > 0: if INFO = i, then i eigenvectors failed to converge.
234*> Their indices are stored in array IFAIL.
235*> \endverbatim
236*
237* Authors:
238* ========
239*
240*> \author Univ. of Tennessee
241*> \author Univ. of California Berkeley
242*> \author Univ. of Colorado Denver
243*> \author NAG Ltd.
244*
245*> \ingroup heevx
246*
247* =====================================================================
248 SUBROUTINE ssyevx( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL,
249 $ IU,
250 $ ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK,
251 $ IFAIL, INFO )
252*
253* -- LAPACK driver routine --
254* -- LAPACK is a software package provided by Univ. of Tennessee, --
255* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
256*
257* .. Scalar Arguments ..
258 CHARACTER JOBZ, RANGE, UPLO
259 INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N
260 REAL ABSTOL, VL, VU
261* ..
262* .. Array Arguments ..
263 INTEGER IFAIL( * ), IWORK( * )
264 REAL A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
265* ..
266*
267* =====================================================================
268*
269* .. Parameters ..
270 REAL ZERO, ONE
271 PARAMETER ( ZERO = 0.0e+0, one = 1.0e+0 )
272* ..
273* .. Local Scalars ..
274 LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
275 $ WANTZ
276 CHARACTER ORDER
277 INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
278 $ INDISP, INDIWO, INDTAU, INDWKN, INDWRK, ISCALE,
279 $ itmp1, j, jj, llwork, llwrkn, lwkmin,
280 $ lwkopt, nb, nsplit
281 REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
282 $ SIGMA, SMLNUM, TMP1, VLL, VUU
283* ..
284* .. External Functions ..
285 LOGICAL LSAME
286 INTEGER ILAENV
287 REAL SLAMCH, SLANSY, SROUNDUP_LWORK
288 EXTERNAL lsame, ilaenv, slamch,
289 $ slansy, sroundup_lwork
290* ..
291* .. External Subroutines ..
292 EXTERNAL scopy, slacpy, sorgtr, sormtr, sscal,
293 $ sstebz,
295* ..
296* .. Intrinsic Functions ..
297 INTRINSIC max, min, sqrt
298* ..
299* .. Executable Statements ..
300*
301* Test the input parameters.
302*
303 lower = lsame( uplo, 'L' )
304 wantz = lsame( jobz, 'V' )
305 alleig = lsame( range, 'A' )
306 valeig = lsame( range, 'V' )
307 indeig = lsame( range, 'I' )
308 lquery = ( lwork.EQ.-1 )
309*
310 info = 0
311 IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
312 info = -1
313 ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
314 info = -2
315 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
316 info = -3
317 ELSE IF( n.LT.0 ) THEN
318 info = -4
319 ELSE IF( lda.LT.max( 1, n ) ) THEN
320 info = -6
321 ELSE
322 IF( valeig ) THEN
323 IF( n.GT.0 .AND. vu.LE.vl )
324 $ info = -8
325 ELSE IF( indeig ) THEN
326 IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
327 info = -9
328 ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
329 info = -10
330 END IF
331 END IF
332 END IF
333 IF( info.EQ.0 ) THEN
334 IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
335 info = -15
336 END IF
337 END IF
338*
339 IF( info.EQ.0 ) THEN
340 IF( n.LE.1 ) THEN
341 lwkmin = 1
342 lwkopt = 1
343 ELSE
344 lwkmin = 8*n
345 nb = ilaenv( 1, 'SSYTRD', uplo, n, -1, -1, -1 )
346 nb = max( nb, ilaenv( 1, 'SORMTR', uplo, n, -1, -1,
347 $ -1 ) )
348 lwkopt = max( lwkmin, ( nb + 3 )*n )
349 END IF
350 work( 1 ) = sroundup_lwork( lwkopt )
351*
352 IF( lwork.LT.lwkmin .AND. .NOT.lquery )
353 $ info = -17
354 END IF
355*
356 IF( info.NE.0 ) THEN
357 CALL xerbla( 'SSYEVX', -info )
358 RETURN
359 ELSE IF( lquery ) THEN
360 RETURN
361 END IF
362*
363* Quick return if possible
364*
365 m = 0
366 IF( n.EQ.0 ) THEN
367 RETURN
368 END IF
369*
370 IF( n.EQ.1 ) THEN
371 IF( alleig .OR. indeig ) THEN
372 m = 1
373 w( 1 ) = a( 1, 1 )
374 ELSE
375 IF( vl.LT.a( 1, 1 ) .AND. vu.GE.a( 1, 1 ) ) THEN
376 m = 1
377 w( 1 ) = a( 1, 1 )
378 END IF
379 END IF
380 IF( wantz )
381 $ z( 1, 1 ) = one
382 RETURN
383 END IF
384*
385* Get machine constants.
386*
387 safmin = slamch( 'Safe minimum' )
388 eps = slamch( 'Precision' )
389 smlnum = safmin / eps
390 bignum = one / smlnum
391 rmin = sqrt( smlnum )
392 rmax = min( sqrt( bignum ), one / sqrt( sqrt( safmin ) ) )
393*
394* Scale matrix to allowable range, if necessary.
395*
396 iscale = 0
397 abstll = abstol
398 IF( valeig ) THEN
399 vll = vl
400 vuu = vu
401 END IF
402 anrm = slansy( 'M', uplo, n, a, lda, work )
403 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
404 iscale = 1
405 sigma = rmin / anrm
406 ELSE IF( anrm.GT.rmax ) THEN
407 iscale = 1
408 sigma = rmax / anrm
409 END IF
410 IF( iscale.EQ.1 ) THEN
411 IF( lower ) THEN
412 DO 10 j = 1, n
413 CALL sscal( n-j+1, sigma, a( j, j ), 1 )
414 10 CONTINUE
415 ELSE
416 DO 20 j = 1, n
417 CALL sscal( j, sigma, a( 1, j ), 1 )
418 20 CONTINUE
419 END IF
420 IF( abstol.GT.0 )
421 $ abstll = abstol*sigma
422 IF( valeig ) THEN
423 vll = vl*sigma
424 vuu = vu*sigma
425 END IF
426 END IF
427*
428* Call SSYTRD to reduce symmetric matrix to tridiagonal form.
429*
430 indtau = 1
431 inde = indtau + n
432 indd = inde + n
433 indwrk = indd + n
434 llwork = lwork - indwrk + 1
435 CALL ssytrd( uplo, n, a, lda, work( indd ), work( inde ),
436 $ work( indtau ), work( indwrk ), llwork, iinfo )
437*
438* If all eigenvalues are desired and ABSTOL is less than or equal to
439* zero, then call SSTERF or SORGTR and SSTEQR. If this fails for
440* some eigenvalue, then try SSTEBZ.
441*
442 test = .false.
443 IF( indeig ) THEN
444 IF( il.EQ.1 .AND. iu.EQ.n ) THEN
445 test = .true.
446 END IF
447 END IF
448 IF( ( alleig .OR. test ) .AND. ( abstol.LE.zero ) ) THEN
449 CALL scopy( n, work( indd ), 1, w, 1 )
450 indee = indwrk + 2*n
451 IF( .NOT.wantz ) THEN
452 CALL scopy( n-1, work( inde ), 1, work( indee ), 1 )
453 CALL ssterf( n, w, work( indee ), info )
454 ELSE
455 CALL slacpy( 'A', n, n, a, lda, z, ldz )
456 CALL sorgtr( uplo, n, z, ldz, work( indtau ),
457 $ work( indwrk ), llwork, iinfo )
458 CALL scopy( n-1, work( inde ), 1, work( indee ), 1 )
459 CALL ssteqr( jobz, n, w, work( indee ), z, ldz,
460 $ work( indwrk ), info )
461 IF( info.EQ.0 ) THEN
462 DO 30 i = 1, n
463 ifail( i ) = 0
464 30 CONTINUE
465 END IF
466 END IF
467 IF( info.EQ.0 ) THEN
468 m = n
469 GO TO 40
470 END IF
471 info = 0
472 END IF
473*
474* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
475*
476 IF( wantz ) THEN
477 order = 'B'
478 ELSE
479 order = 'E'
480 END IF
481 indibl = 1
482 indisp = indibl + n
483 indiwo = indisp + n
484 CALL sstebz( range, order, n, vll, vuu, il, iu, abstll,
485 $ work( indd ), work( inde ), m, nsplit, w,
486 $ iwork( indibl ), iwork( indisp ), work( indwrk ),
487 $ iwork( indiwo ), info )
488*
489 IF( wantz ) THEN
490 CALL sstein( n, work( indd ), work( inde ), m, w,
491 $ iwork( indibl ), iwork( indisp ), z, ldz,
492 $ work( indwrk ), iwork( indiwo ), ifail, info )
493*
494* Apply orthogonal matrix used in reduction to tridiagonal
495* form to eigenvectors returned by SSTEIN.
496*
497 indwkn = inde
498 llwrkn = lwork - indwkn + 1
499 CALL sormtr( 'L', uplo, 'N', n, m, a, lda, work( indtau ),
500 $ z,
501 $ ldz, work( indwkn ), llwrkn, iinfo )
502 END IF
503*
504* If matrix was scaled, then rescale eigenvalues appropriately.
505*
506 40 CONTINUE
507 IF( iscale.EQ.1 ) THEN
508 IF( info.EQ.0 ) THEN
509 imax = m
510 ELSE
511 imax = info - 1
512 END IF
513 CALL sscal( imax, one / sigma, w, 1 )
514 END IF
515*
516* If eigenvalues are not in order, then sort them, along with
517* eigenvectors.
518*
519 IF( wantz ) THEN
520 DO 60 j = 1, m - 1
521 i = 0
522 tmp1 = w( j )
523 DO 50 jj = j + 1, m
524 IF( w( jj ).LT.tmp1 ) THEN
525 i = jj
526 tmp1 = w( jj )
527 END IF
528 50 CONTINUE
529*
530 IF( i.NE.0 ) THEN
531 itmp1 = iwork( indibl+i-1 )
532 w( i ) = w( j )
533 iwork( indibl+i-1 ) = iwork( indibl+j-1 )
534 w( j ) = tmp1
535 iwork( indibl+j-1 ) = itmp1
536 CALL sswap( n, z( 1, i ), 1, z( 1, j ), 1 )
537 IF( info.NE.0 ) THEN
538 itmp1 = ifail( i )
539 ifail( i ) = ifail( j )
540 ifail( j ) = itmp1
541 END IF
542 END IF
543 60 CONTINUE
544 END IF
545*
546* Set WORK(1) to optimal workspace size.
547*
548 work( 1 ) = sroundup_lwork( lwkopt )
549*
550 RETURN
551*
552* End of SSYEVX
553*
554 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine ssyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)
SSYEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Definition ssyevx.f:252
subroutine ssytrd(uplo, n, a, lda, d, e, tau, work, lwork, info)
SSYTRD
Definition ssytrd.f:191
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine sstebz(range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w, iblock, isplit, work, iwork, info)
SSTEBZ
Definition sstebz.f:272
subroutine sstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifail, info)
SSTEIN
Definition sstein.f:172
subroutine ssteqr(compz, n, d, e, z, ldz, work, info)
SSTEQR
Definition ssteqr.f:129
subroutine ssterf(n, d, e, info)
SSTERF
Definition ssterf.f:84
subroutine sswap(n, sx, incx, sy, incy)
SSWAP
Definition sswap.f:82
subroutine sorgtr(uplo, n, a, lda, tau, work, lwork, info)
SORGTR
Definition sorgtr.f:121
subroutine sormtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
SORMTR
Definition sormtr.f:171