LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sstebz()

subroutine sstebz ( character range,
character order,
integer n,
real vl,
real vu,
integer il,
integer iu,
real abstol,
real, dimension( * ) d,
real, dimension( * ) e,
integer m,
integer nsplit,
real, dimension( * ) w,
integer, dimension( * ) iblock,
integer, dimension( * ) isplit,
real, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

SSTEBZ

Download SSTEBZ + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSTEBZ computes the eigenvalues of a symmetric tridiagonal
!> matrix T.  The user may ask for all eigenvalues, all eigenvalues
!> in the half-open interval (VL, VU], or the IL-th through IU-th
!> eigenvalues.
!>
!> To avoid overflow, the matrix must be scaled so that its
!> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
!> accuracy, it should not be much smaller than that.
!>
!> See W. Kahan , Report CS41, Computer Science Dept., Stanford
!> University, July 21, 1966.
!> 
Parameters
[in]RANGE
!>          RANGE is CHARACTER*1
!>          = 'A': ()   all eigenvalues will be found.
!>          = 'V': () all eigenvalues in the half-open interval
!>                           (VL, VU] will be found.
!>          = 'I': () the IL-th through IU-th eigenvalues (of the
!>                           entire matrix) will be found.
!> 
[in]ORDER
!>          ORDER is CHARACTER*1
!>          = 'B': () the eigenvalues will be grouped by
!>                              split-off block (see IBLOCK, ISPLIT) and
!>                              ordered from smallest to largest within
!>                              the block.
!>          = 'E': ()
!>                              the eigenvalues for the entire matrix
!>                              will be ordered from smallest to
!>                              largest.
!> 
[in]N
!>          N is INTEGER
!>          The order of the tridiagonal matrix T.  N >= 0.
!> 
[in]VL
!>          VL is REAL
!>
!>          If RANGE='V', the lower bound of the interval to
!>          be searched for eigenvalues.  Eigenvalues less than or equal
!>          to VL, or greater than VU, will not be returned.  VL < VU.
!>          Not referenced if RANGE = 'A' or 'I'.
!> 
[in]VU
!>          VU is REAL
!>
!>          If RANGE='V', the upper bound of the interval to
!>          be searched for eigenvalues.  Eigenvalues less than or equal
!>          to VL, or greater than VU, will not be returned.  VL < VU.
!>          Not referenced if RANGE = 'A' or 'I'.
!> 
[in]IL
!>          IL is INTEGER
!>
!>          If RANGE='I', the index of the
!>          smallest eigenvalue to be returned.
!>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
!>          Not referenced if RANGE = 'A' or 'V'.
!> 
[in]IU
!>          IU is INTEGER
!>
!>          If RANGE='I', the index of the
!>          largest eigenvalue to be returned.
!>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
!>          Not referenced if RANGE = 'A' or 'V'.
!> 
[in]ABSTOL
!>          ABSTOL is REAL
!>          The absolute tolerance for the eigenvalues.  An eigenvalue
!>          (or cluster) is considered to be located if it has been
!>          determined to lie in an interval whose width is ABSTOL or
!>          less.  If ABSTOL is less than or equal to zero, then ULP*|T|
!>          will be used, where |T| means the 1-norm of T.
!>
!>          Eigenvalues will be computed most accurately when ABSTOL is
!>          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
!> 
[in]D
!>          D is REAL array, dimension (N)
!>          The n diagonal elements of the tridiagonal matrix T.
!> 
[in]E
!>          E is REAL array, dimension (N-1)
!>          The (n-1) off-diagonal elements of the tridiagonal matrix T.
!> 
[out]M
!>          M is INTEGER
!>          The actual number of eigenvalues found. 0 <= M <= N.
!>          (See also the description of INFO=2,3.)
!> 
[out]NSPLIT
!>          NSPLIT is INTEGER
!>          The number of diagonal blocks in the matrix T.
!>          1 <= NSPLIT <= N.
!> 
[out]W
!>          W is REAL array, dimension (N)
!>          On exit, the first M elements of W will contain the
!>          eigenvalues.  (SSTEBZ may use the remaining N-M elements as
!>          workspace.)
!> 
[out]IBLOCK
!>          IBLOCK is INTEGER array, dimension (N)
!>          At each row/column j where E(j) is zero or small, the
!>          matrix T is considered to split into a block diagonal
!>          matrix.  On exit, if INFO = 0, IBLOCK(i) specifies to which
!>          block (from 1 to the number of blocks) the eigenvalue W(i)
!>          belongs.  (SSTEBZ may use the remaining N-M elements as
!>          workspace.)
!> 
[out]ISPLIT
!>          ISPLIT is INTEGER array, dimension (N)
!>          The splitting points, at which T breaks up into submatrices.
!>          The first submatrix consists of rows/columns 1 to ISPLIT(1),
!>          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
!>          etc., and the NSPLIT-th consists of rows/columns
!>          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
!>          (Only the first NSPLIT elements will actually be used, but
!>          since the user cannot know a priori what value NSPLIT will
!>          have, N words must be reserved for ISPLIT.)
!> 
[out]WORK
!>          WORK is REAL array, dimension (4*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (3*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  some or all of the eigenvalues failed to converge or
!>                were not computed:
!>                =1 or 3: Bisection failed to converge for some
!>                        eigenvalues; these eigenvalues are flagged by a
!>                        negative block number.  The effect is that the
!>                        eigenvalues may not be as accurate as the
!>                        absolute and relative tolerances.  This is
!>                        generally caused by unexpectedly inaccurate
!>                        arithmetic.
!>                =2 or 3: RANGE='I' only: Not all of the eigenvalues
!>                        IL:IU were found.
!>                        Effect: M < IU+1-IL
!>                        Cause:  non-monotonic arithmetic, causing the
!>                                Sturm sequence to be non-monotonic.
!>                        Cure:   recalculate, using RANGE='A', and pick
!>                                out eigenvalues IL:IU.  In some cases,
!>                                increasing the PARAMETER  may
!>                                make things work.
!>                = 4:    RANGE='I', and the Gershgorin interval
!>                        initially used was too small.  No eigenvalues
!>                        were computed.
!>                        Probable cause: your machine has sloppy
!>                                        floating-point arithmetic.
!>                        Cure: Increase the PARAMETER ,
!>                              recompile, and try again.
!> 
Internal Parameters:
!>  RELFAC  REAL, default = 2.0e0
!>          The relative tolerance.  An interval (a,b] lies within
!>           if  b-a < RELFAC*ulp*max(|a|,|b|),
!>          where  is the machine precision (distance from 1 to
!>          the next larger floating point number.)
!>
!>  FUDGE   REAL, default = 2
!>          A  to widen the Gershgorin intervals.  Ideally,
!>          a value of 1 should work, but on machines with sloppy
!>          arithmetic, this needs to be larger.  The default for
!>          publicly released versions should be large enough to handle
!>          the worst machine around.  Note that this has no effect
!>          on accuracy of the solution.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 268 of file sstebz.f.

272*
273* -- LAPACK computational routine --
274* -- LAPACK is a software package provided by Univ. of Tennessee, --
275* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
276*
277* .. Scalar Arguments ..
278 CHARACTER ORDER, RANGE
279 INTEGER IL, INFO, IU, M, N, NSPLIT
280 REAL ABSTOL, VL, VU
281* ..
282* .. Array Arguments ..
283 INTEGER IBLOCK( * ), ISPLIT( * ), IWORK( * )
284 REAL D( * ), E( * ), W( * ), WORK( * )
285* ..
286*
287* =====================================================================
288*
289* .. Parameters ..
290 REAL ZERO, ONE, TWO, HALF
291 parameter( zero = 0.0e0, one = 1.0e0, two = 2.0e0,
292 $ half = 1.0e0 / two )
293 REAL FUDGE, RELFAC
294 parameter( fudge = 2.1e0, relfac = 2.0e0 )
295* ..
296* .. Local Scalars ..
297 LOGICAL NCNVRG, TOOFEW
298 INTEGER IB, IBEGIN, IDISCL, IDISCU, IE, IEND, IINFO,
299 $ IM, IN, IOFF, IORDER, IOUT, IRANGE, ITMAX,
300 $ ITMP1, IW, IWOFF, J, JB, JDISC, JE, NB, NWL,
301 $ NWU
302 REAL ATOLI, BNORM, GL, GU, PIVMIN, RTOLI, SAFEMN,
303 $ TMP1, TMP2, TNORM, ULP, WKILL, WL, WLU, WU, WUL
304* ..
305* .. Local Arrays ..
306 INTEGER IDUMMA( 1 )
307* ..
308* .. External Functions ..
309 LOGICAL LSAME
310 INTEGER ILAENV
311 REAL SLAMCH
312 EXTERNAL lsame, ilaenv, slamch
313* ..
314* .. External Subroutines ..
315 EXTERNAL slaebz, xerbla
316* ..
317* .. Intrinsic Functions ..
318 INTRINSIC abs, int, log, max, min, sqrt
319* ..
320* .. Executable Statements ..
321*
322 info = 0
323*
324* Decode RANGE
325*
326 IF( lsame( range, 'A' ) ) THEN
327 irange = 1
328 ELSE IF( lsame( range, 'V' ) ) THEN
329 irange = 2
330 ELSE IF( lsame( range, 'I' ) ) THEN
331 irange = 3
332 ELSE
333 irange = 0
334 END IF
335*
336* Decode ORDER
337*
338 IF( lsame( order, 'B' ) ) THEN
339 iorder = 2
340 ELSE IF( lsame( order, 'E' ) ) THEN
341 iorder = 1
342 ELSE
343 iorder = 0
344 END IF
345*
346* Check for Errors
347*
348 IF( irange.LE.0 ) THEN
349 info = -1
350 ELSE IF( iorder.LE.0 ) THEN
351 info = -2
352 ELSE IF( n.LT.0 ) THEN
353 info = -3
354 ELSE IF( irange.EQ.2 ) THEN
355 IF( vl.GE.vu ) info = -5
356 ELSE IF( irange.EQ.3 .AND. ( il.LT.1 .OR. il.GT.max( 1, n ) ) )
357 $ THEN
358 info = -6
359 ELSE IF( irange.EQ.3 .AND. ( iu.LT.min( n, il ) .OR. iu.GT.n ) )
360 $ THEN
361 info = -7
362 END IF
363*
364 IF( info.NE.0 ) THEN
365 CALL xerbla( 'SSTEBZ', -info )
366 RETURN
367 END IF
368*
369* Initialize error flags
370*
371 info = 0
372 ncnvrg = .false.
373 toofew = .false.
374*
375* Quick return if possible
376*
377 m = 0
378 IF( n.EQ.0 )
379 $ RETURN
380*
381* Simplifications:
382*
383 IF( irange.EQ.3 .AND. il.EQ.1 .AND. iu.EQ.n )
384 $ irange = 1
385*
386* Get machine constants
387* NB is the minimum vector length for vector bisection, or 0
388* if only scalar is to be done.
389*
390 safemn = slamch( 'S' )
391 ulp = slamch( 'P' )
392 rtoli = ulp*relfac
393 nb = ilaenv( 1, 'SSTEBZ', ' ', n, -1, -1, -1 )
394 IF( nb.LE.1 )
395 $ nb = 0
396*
397* Special Case when N=1
398*
399 IF( n.EQ.1 ) THEN
400 nsplit = 1
401 isplit( 1 ) = 1
402 IF( irange.EQ.2 .AND. ( vl.GE.d( 1 ) .OR. vu.LT.d( 1 ) ) ) THEN
403 m = 0
404 ELSE
405 w( 1 ) = d( 1 )
406 iblock( 1 ) = 1
407 m = 1
408 END IF
409 RETURN
410 END IF
411*
412* Compute Splitting Points
413*
414 nsplit = 1
415 work( n ) = zero
416 pivmin = one
417*
418 DO 10 j = 2, n
419 tmp1 = e( j-1 )**2
420 IF( abs( d( j )*d( j-1 ) )*ulp**2+safemn.GT.tmp1 ) THEN
421 isplit( nsplit ) = j - 1
422 nsplit = nsplit + 1
423 work( j-1 ) = zero
424 ELSE
425 work( j-1 ) = tmp1
426 pivmin = max( pivmin, tmp1 )
427 END IF
428 10 CONTINUE
429 isplit( nsplit ) = n
430 pivmin = pivmin*safemn
431*
432* Compute Interval and ATOLI
433*
434 IF( irange.EQ.3 ) THEN
435*
436* RANGE='I': Compute the interval containing eigenvalues
437* IL through IU.
438*
439* Compute Gershgorin interval for entire (split) matrix
440* and use it as the initial interval
441*
442 gu = d( 1 )
443 gl = d( 1 )
444 tmp1 = zero
445*
446 DO 20 j = 1, n - 1
447 tmp2 = sqrt( work( j ) )
448 gu = max( gu, d( j )+tmp1+tmp2 )
449 gl = min( gl, d( j )-tmp1-tmp2 )
450 tmp1 = tmp2
451 20 CONTINUE
452*
453 gu = max( gu, d( n )+tmp1 )
454 gl = min( gl, d( n )-tmp1 )
455 tnorm = max( abs( gl ), abs( gu ) )
456 gl = gl - fudge*tnorm*ulp*real( n ) - fudge*two*pivmin
457 gu = gu + fudge*tnorm*ulp*real( n ) + fudge*pivmin
458*
459* Compute Iteration parameters
460*
461 itmax = int( ( log( tnorm+pivmin )-log( pivmin ) ) /
462 $ log( two ) ) + 2
463 IF( abstol.LE.zero ) THEN
464 atoli = ulp*tnorm
465 ELSE
466 atoli = abstol
467 END IF
468*
469 work( n+1 ) = gl
470 work( n+2 ) = gl
471 work( n+3 ) = gu
472 work( n+4 ) = gu
473 work( n+5 ) = gl
474 work( n+6 ) = gu
475 iwork( 1 ) = -1
476 iwork( 2 ) = -1
477 iwork( 3 ) = n + 1
478 iwork( 4 ) = n + 1
479 iwork( 5 ) = il - 1
480 iwork( 6 ) = iu
481*
482 CALL slaebz( 3, itmax, n, 2, 2, nb, atoli, rtoli, pivmin, d,
483 $ e,
484 $ work, iwork( 5 ), work( n+1 ), work( n+5 ), iout,
485 $ iwork, w, iblock, iinfo )
486*
487 IF( iwork( 6 ).EQ.iu ) THEN
488 wl = work( n+1 )
489 wlu = work( n+3 )
490 nwl = iwork( 1 )
491 wu = work( n+4 )
492 wul = work( n+2 )
493 nwu = iwork( 4 )
494 ELSE
495 wl = work( n+2 )
496 wlu = work( n+4 )
497 nwl = iwork( 2 )
498 wu = work( n+3 )
499 wul = work( n+1 )
500 nwu = iwork( 3 )
501 END IF
502*
503 IF( nwl.LT.0 .OR. nwl.GE.n .OR. nwu.LT.1 .OR. nwu.GT.n ) THEN
504 info = 4
505 RETURN
506 END IF
507 ELSE
508*
509* RANGE='A' or 'V' -- Set ATOLI
510*
511 tnorm = max( abs( d( 1 ) )+abs( e( 1 ) ),
512 $ abs( d( n ) )+abs( e( n-1 ) ) )
513*
514 DO 30 j = 2, n - 1
515 tnorm = max( tnorm, abs( d( j ) )+abs( e( j-1 ) )+
516 $ abs( e( j ) ) )
517 30 CONTINUE
518*
519 IF( abstol.LE.zero ) THEN
520 atoli = ulp*tnorm
521 ELSE
522 atoli = abstol
523 END IF
524*
525 IF( irange.EQ.2 ) THEN
526 wl = vl
527 wu = vu
528 ELSE
529 wl = zero
530 wu = zero
531 END IF
532 END IF
533*
534* Find Eigenvalues -- Loop Over Blocks and recompute NWL and NWU.
535* NWL accumulates the number of eigenvalues .le. WL,
536* NWU accumulates the number of eigenvalues .le. WU
537*
538 m = 0
539 iend = 0
540 info = 0
541 nwl = 0
542 nwu = 0
543*
544 DO 70 jb = 1, nsplit
545 ioff = iend
546 ibegin = ioff + 1
547 iend = isplit( jb )
548 in = iend - ioff
549*
550 IF( in.EQ.1 ) THEN
551*
552* Special Case -- IN=1
553*
554 IF( irange.EQ.1 .OR. wl.GE.d( ibegin )-pivmin )
555 $ nwl = nwl + 1
556 IF( irange.EQ.1 .OR. wu.GE.d( ibegin )-pivmin )
557 $ nwu = nwu + 1
558 IF( irange.EQ.1 .OR. ( wl.LT.d( ibegin )-pivmin .AND. wu.GE.
559 $ d( ibegin )-pivmin ) ) THEN
560 m = m + 1
561 w( m ) = d( ibegin )
562 iblock( m ) = jb
563 END IF
564 ELSE
565*
566* General Case -- IN > 1
567*
568* Compute Gershgorin Interval
569* and use it as the initial interval
570*
571 gu = d( ibegin )
572 gl = d( ibegin )
573 tmp1 = zero
574*
575 DO 40 j = ibegin, iend - 1
576 tmp2 = abs( e( j ) )
577 gu = max( gu, d( j )+tmp1+tmp2 )
578 gl = min( gl, d( j )-tmp1-tmp2 )
579 tmp1 = tmp2
580 40 CONTINUE
581*
582 gu = max( gu, d( iend )+tmp1 )
583 gl = min( gl, d( iend )-tmp1 )
584 bnorm = max( abs( gl ), abs( gu ) )
585 gl = gl - fudge*bnorm*ulp*real( in ) - fudge*pivmin
586 gu = gu + fudge*bnorm*ulp*real( in ) + fudge*pivmin
587*
588* Compute ATOLI for the current submatrix
589*
590 IF( abstol.LE.zero ) THEN
591 atoli = ulp*max( abs( gl ), abs( gu ) )
592 ELSE
593 atoli = abstol
594 END IF
595*
596 IF( irange.GT.1 ) THEN
597 IF( gu.LT.wl ) THEN
598 nwl = nwl + in
599 nwu = nwu + in
600 GO TO 70
601 END IF
602 gl = max( gl, wl )
603 gu = min( gu, wu )
604 IF( gl.GE.gu )
605 $ GO TO 70
606 END IF
607*
608* Set Up Initial Interval
609*
610 work( n+1 ) = gl
611 work( n+in+1 ) = gu
612 CALL slaebz( 1, 0, in, in, 1, nb, atoli, rtoli, pivmin,
613 $ d( ibegin ), e( ibegin ), work( ibegin ),
614 $ idumma, work( n+1 ), work( n+2*in+1 ), im,
615 $ iwork, w( m+1 ), iblock( m+1 ), iinfo )
616*
617 nwl = nwl + iwork( 1 )
618 nwu = nwu + iwork( in+1 )
619 iwoff = m - iwork( 1 )
620*
621* Compute Eigenvalues
622*
623 itmax = int( ( log( gu-gl+pivmin )-log( pivmin ) ) /
624 $ log( two ) ) + 2
625 CALL slaebz( 2, itmax, in, in, 1, nb, atoli, rtoli,
626 $ pivmin,
627 $ d( ibegin ), e( ibegin ), work( ibegin ),
628 $ idumma, work( n+1 ), work( n+2*in+1 ), iout,
629 $ iwork, w( m+1 ), iblock( m+1 ), iinfo )
630*
631* Copy Eigenvalues Into W and IBLOCK
632* Use -JB for block number for unconverged eigenvalues.
633*
634 DO 60 j = 1, iout
635 tmp1 = half*( work( j+n )+work( j+in+n ) )
636*
637* Flag non-convergence.
638*
639 IF( j.GT.iout-iinfo ) THEN
640 ncnvrg = .true.
641 ib = -jb
642 ELSE
643 ib = jb
644 END IF
645 DO 50 je = iwork( j ) + 1 + iwoff,
646 $ iwork( j+in ) + iwoff
647 w( je ) = tmp1
648 iblock( je ) = ib
649 50 CONTINUE
650 60 CONTINUE
651*
652 m = m + im
653 END IF
654 70 CONTINUE
655*
656* If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU
657* If NWL+1 < IL or NWU > IU, discard extra eigenvalues.
658*
659 IF( irange.EQ.3 ) THEN
660 im = 0
661 idiscl = il - 1 - nwl
662 idiscu = nwu - iu
663*
664 IF( idiscl.GT.0 .OR. idiscu.GT.0 ) THEN
665 DO 80 je = 1, m
666 IF( w( je ).LE.wlu .AND. idiscl.GT.0 ) THEN
667 idiscl = idiscl - 1
668 ELSE IF( w( je ).GE.wul .AND. idiscu.GT.0 ) THEN
669 idiscu = idiscu - 1
670 ELSE
671 im = im + 1
672 w( im ) = w( je )
673 iblock( im ) = iblock( je )
674 END IF
675 80 CONTINUE
676 m = im
677 END IF
678 IF( idiscl.GT.0 .OR. idiscu.GT.0 ) THEN
679*
680* Code to deal with effects of bad arithmetic:
681* Some low eigenvalues to be discarded are not in (WL,WLU],
682* or high eigenvalues to be discarded are not in (WUL,WU]
683* so just kill off the smallest IDISCL/largest IDISCU
684* eigenvalues, by simply finding the smallest/largest
685* eigenvalue(s).
686*
687* (If N(w) is monotone non-decreasing, this should never
688* happen.)
689*
690 IF( idiscl.GT.0 ) THEN
691 wkill = wu
692 DO 100 jdisc = 1, idiscl
693 iw = 0
694 DO 90 je = 1, m
695 IF( iblock( je ).NE.0 .AND.
696 $ ( w( je ).LT.wkill .OR. iw.EQ.0 ) ) THEN
697 iw = je
698 wkill = w( je )
699 END IF
700 90 CONTINUE
701 iblock( iw ) = 0
702 100 CONTINUE
703 END IF
704 IF( idiscu.GT.0 ) THEN
705*
706 wkill = wl
707 DO 120 jdisc = 1, idiscu
708 iw = 0
709 DO 110 je = 1, m
710 IF( iblock( je ).NE.0 .AND.
711 $ ( w( je ).GT.wkill .OR. iw.EQ.0 ) ) THEN
712 iw = je
713 wkill = w( je )
714 END IF
715 110 CONTINUE
716 iblock( iw ) = 0
717 120 CONTINUE
718 END IF
719 im = 0
720 DO 130 je = 1, m
721 IF( iblock( je ).NE.0 ) THEN
722 im = im + 1
723 w( im ) = w( je )
724 iblock( im ) = iblock( je )
725 END IF
726 130 CONTINUE
727 m = im
728 END IF
729 IF( idiscl.LT.0 .OR. idiscu.LT.0 ) THEN
730 toofew = .true.
731 END IF
732 END IF
733*
734* If ORDER='B', do nothing -- the eigenvalues are already sorted
735* by block.
736* If ORDER='E', sort the eigenvalues from smallest to largest
737*
738 IF( iorder.EQ.1 .AND. nsplit.GT.1 ) THEN
739 DO 150 je = 1, m - 1
740 ie = 0
741 tmp1 = w( je )
742 DO 140 j = je + 1, m
743 IF( w( j ).LT.tmp1 ) THEN
744 ie = j
745 tmp1 = w( j )
746 END IF
747 140 CONTINUE
748*
749 IF( ie.NE.0 ) THEN
750 itmp1 = iblock( ie )
751 w( ie ) = w( je )
752 iblock( ie ) = iblock( je )
753 w( je ) = tmp1
754 iblock( je ) = itmp1
755 END IF
756 150 CONTINUE
757 END IF
758*
759 info = 0
760 IF( ncnvrg )
761 $ info = info + 1
762 IF( toofew )
763 $ info = info + 2
764 RETURN
765*
766* End of SSTEBZ
767*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine slaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol, reltol, pivmin, d, e, e2, nval, ab, c, mout, nab, work, iwork, info)
SLAEBZ computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than ...
Definition slaebz.f:317
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: