LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sormtr()

subroutine sormtr ( character side,
character uplo,
character trans,
integer m,
integer n,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) tau,
real, dimension( ldc, * ) c,
integer ldc,
real, dimension( * ) work,
integer lwork,
integer info )

SORMTR

Download SORMTR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SORMTR overwrites the general real M-by-N matrix C with
!>
!>                 SIDE = 'L'     SIDE = 'R'
!> TRANS = 'N':      Q * C          C * Q
!> TRANS = 'T':      Q**T * C       C * Q**T
!>
!> where Q is a real orthogonal matrix of order nq, with nq = m if
!> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
!> nq-1 elementary reflectors, as returned by SSYTRD:
!>
!> if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
!>
!> if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
!> 
Parameters
[in]SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': apply Q or Q**T from the Left;
!>          = 'R': apply Q or Q**T from the Right.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U': Upper triangle of A contains elementary reflectors
!>                 from SSYTRD;
!>          = 'L': Lower triangle of A contains elementary reflectors
!>                 from SSYTRD.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          = 'N':  No transpose, apply Q;
!>          = 'T':  Transpose, apply Q**T.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix C. M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix C. N >= 0.
!> 
[in]A
!>          A is REAL array, dimension
!>                               (LDA,M) if SIDE = 'L'
!>                               (LDA,N) if SIDE = 'R'
!>          The vectors which define the elementary reflectors, as
!>          returned by SSYTRD.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.
!>          LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
!> 
[in]TAU
!>          TAU is REAL array, dimension
!>                               (M-1) if SIDE = 'L'
!>                               (N-1) if SIDE = 'R'
!>          TAU(i) must contain the scalar factor of the elementary
!>          reflector H(i), as returned by SSYTRD.
!> 
[in,out]C
!>          C is REAL array, dimension (LDC,N)
!>          On entry, the M-by-N matrix C.
!>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
!> 
[in]LDC
!>          LDC is INTEGER
!>          The leading dimension of the array C. LDC >= max(1,M).
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If SIDE = 'L', LWORK >= max(1,N);
!>          if SIDE = 'R', LWORK >= max(1,M).
!>          For optimum performance LWORK >= N*NB if SIDE = 'L', and
!>          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
!>          blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 168 of file sormtr.f.

171*
172* -- LAPACK computational routine --
173* -- LAPACK is a software package provided by Univ. of Tennessee, --
174* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175*
176* .. Scalar Arguments ..
177 CHARACTER SIDE, TRANS, UPLO
178 INTEGER INFO, LDA, LDC, LWORK, M, N
179* ..
180* .. Array Arguments ..
181 REAL A( LDA, * ), C( LDC, * ), TAU( * ),
182 $ WORK( * )
183* ..
184*
185* =====================================================================
186*
187* .. Local Scalars ..
188 LOGICAL LEFT, LQUERY, UPPER
189 INTEGER I1, I2, IINFO, LWKOPT, MI, NI, NB, NQ, NW
190* ..
191* .. External Functions ..
192 LOGICAL LSAME
193 INTEGER ILAENV
194 REAL SROUNDUP_LWORK
195 EXTERNAL ilaenv, lsame, sroundup_lwork
196* ..
197* .. External Subroutines ..
198 EXTERNAL sormql, sormqr, xerbla
199* ..
200* .. Intrinsic Functions ..
201 INTRINSIC max
202* ..
203* .. Executable Statements ..
204*
205* Test the input arguments
206*
207 info = 0
208 left = lsame( side, 'L' )
209 upper = lsame( uplo, 'U' )
210 lquery = ( lwork.EQ.-1 )
211*
212* NQ is the order of Q and NW is the minimum dimension of WORK
213*
214 IF( left ) THEN
215 nq = m
216 nw = max( 1, n )
217 ELSE
218 nq = n
219 nw = max( 1, m )
220 END IF
221 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
222 info = -1
223 ELSE IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
224 info = -2
225 ELSE IF( .NOT.lsame( trans, 'N' ) .AND.
226 $ .NOT.lsame( trans, 'T' ) )
227 $ THEN
228 info = -3
229 ELSE IF( m.LT.0 ) THEN
230 info = -4
231 ELSE IF( n.LT.0 ) THEN
232 info = -5
233 ELSE IF( lda.LT.max( 1, nq ) ) THEN
234 info = -7
235 ELSE IF( ldc.LT.max( 1, m ) ) THEN
236 info = -10
237 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
238 info = -12
239 END IF
240*
241 IF( info.EQ.0 ) THEN
242 IF( upper ) THEN
243 IF( left ) THEN
244 nb = ilaenv( 1, 'SORMQL', side // trans, m-1, n, m-1,
245 $ -1 )
246 ELSE
247 nb = ilaenv( 1, 'SORMQL', side // trans, m, n-1, n-1,
248 $ -1 )
249 END IF
250 ELSE
251 IF( left ) THEN
252 nb = ilaenv( 1, 'SORMQR', side // trans, m-1, n, m-1,
253 $ -1 )
254 ELSE
255 nb = ilaenv( 1, 'SORMQR', side // trans, m, n-1, n-1,
256 $ -1 )
257 END IF
258 END IF
259 lwkopt = nw*nb
260 work( 1 ) = sroundup_lwork(lwkopt)
261 END IF
262*
263 IF( info.NE.0 ) THEN
264 CALL xerbla( 'SORMTR', -info )
265 RETURN
266 ELSE IF( lquery ) THEN
267 RETURN
268 END IF
269*
270* Quick return if possible
271*
272 IF( m.EQ.0 .OR. n.EQ.0 .OR. nq.EQ.1 ) THEN
273 work( 1 ) = 1
274 RETURN
275 END IF
276*
277 IF( left ) THEN
278 mi = m - 1
279 ni = n
280 ELSE
281 mi = m
282 ni = n - 1
283 END IF
284*
285 IF( upper ) THEN
286*
287* Q was determined by a call to SSYTRD with UPLO = 'U'
288*
289 CALL sormql( side, trans, mi, ni, nq-1, a( 1, 2 ), lda, tau,
290 $ c,
291 $ ldc, work, lwork, iinfo )
292 ELSE
293*
294* Q was determined by a call to SSYTRD with UPLO = 'L'
295*
296 IF( left ) THEN
297 i1 = 2
298 i2 = 1
299 ELSE
300 i1 = 1
301 i2 = 2
302 END IF
303 CALL sormqr( side, trans, mi, ni, nq-1, a( 2, 1 ), lda, tau,
304 $ c( i1, i2 ), ldc, work, lwork, iinfo )
305 END IF
306 work( 1 ) = sroundup_lwork(lwkopt)
307 RETURN
308*
309* End of SORMTR
310*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine sormql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMQL
Definition sormql.f:166
subroutine sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMQR
Definition sormqr.f:166
Here is the call graph for this function:
Here is the caller graph for this function: