LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ssytrd()

subroutine ssytrd ( character  uplo,
integer  n,
real, dimension( lda, * )  a,
integer  lda,
real, dimension( * )  d,
real, dimension( * )  e,
real, dimension( * )  tau,
real, dimension( * )  work,
integer  lwork,
integer  info 
)

SSYTRD

Download SSYTRD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SSYTRD reduces a real symmetric matrix A to real symmetric
 tridiagonal form T by an orthogonal similarity transformation:
 Q**T * A * Q = T.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is REAL array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if UPLO = 'U', the diagonal and first superdiagonal
          of A are overwritten by the corresponding elements of the
          tridiagonal matrix T, and the elements above the first
          superdiagonal, with the array TAU, represent the orthogonal
          matrix Q as a product of elementary reflectors; if UPLO
          = 'L', the diagonal and first subdiagonal of A are over-
          written by the corresponding elements of the tridiagonal
          matrix T, and the elements below the first subdiagonal, with
          the array TAU, represent the orthogonal matrix Q as a product
          of elementary reflectors. See Further Details.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]D
          D is REAL array, dimension (N)
          The diagonal elements of the tridiagonal matrix T:
          D(i) = A(i,i).
[out]E
          E is REAL array, dimension (N-1)
          The off-diagonal elements of the tridiagonal matrix T:
          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
[out]TAU
          TAU is REAL array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details).
[out]WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= 1.
          For optimum performance LWORK >= N*NB, where NB is the
          optimal blocksize.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  If UPLO = 'U', the matrix Q is represented as a product of elementary
  reflectors

     Q = H(n-1) . . . H(2) H(1).

  Each H(i) has the form

     H(i) = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
  A(1:i-1,i+1), and tau in TAU(i).

  If UPLO = 'L', the matrix Q is represented as a product of elementary
  reflectors

     Q = H(1) H(2) . . . H(n-1).

  Each H(i) has the form

     H(i) = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
  and tau in TAU(i).

  The contents of A on exit are illustrated by the following examples
  with n = 5:

  if UPLO = 'U':                       if UPLO = 'L':

    (  d   e   v2  v3  v4 )              (  d                  )
    (      d   e   v3  v4 )              (  e   d              )
    (          d   e   v4 )              (  v1  e   d          )
    (              d   e  )              (  v1  v2  e   d      )
    (                  d  )              (  v1  v2  v3  e   d  )

  where d and e denote diagonal and off-diagonal elements of T, and vi
  denotes an element of the vector defining H(i).

Definition at line 191 of file ssytrd.f.

192*
193* -- LAPACK computational routine --
194* -- LAPACK is a software package provided by Univ. of Tennessee, --
195* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
196*
197* .. Scalar Arguments ..
198 CHARACTER UPLO
199 INTEGER INFO, LDA, LWORK, N
200* ..
201* .. Array Arguments ..
202 REAL A( LDA, * ), D( * ), E( * ), TAU( * ),
203 $ WORK( * )
204* ..
205*
206* =====================================================================
207*
208* .. Parameters ..
209 REAL ONE
210 parameter( one = 1.0e+0 )
211* ..
212* .. Local Scalars ..
213 LOGICAL LQUERY, UPPER
214 INTEGER I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,
215 $ NBMIN, NX
216* ..
217* .. External Subroutines ..
218 EXTERNAL slatrd, ssyr2k, ssytd2, xerbla
219* ..
220* .. Intrinsic Functions ..
221 INTRINSIC max
222* ..
223* .. External Functions ..
224 LOGICAL LSAME
225 INTEGER ILAENV
226 REAL SROUNDUP_LWORK
227 EXTERNAL lsame, ilaenv, sroundup_lwork
228* ..
229* .. Executable Statements ..
230*
231* Test the input parameters
232*
233 info = 0
234 upper = lsame( uplo, 'U' )
235 lquery = ( lwork.EQ.-1 )
236 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
237 info = -1
238 ELSE IF( n.LT.0 ) THEN
239 info = -2
240 ELSE IF( lda.LT.max( 1, n ) ) THEN
241 info = -4
242 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
243 info = -9
244 END IF
245*
246 IF( info.EQ.0 ) THEN
247*
248* Determine the block size.
249*
250 nb = ilaenv( 1, 'SSYTRD', uplo, n, -1, -1, -1 )
251 lwkopt = n*nb
252 work( 1 ) = sroundup_lwork(lwkopt)
253 END IF
254*
255 IF( info.NE.0 ) THEN
256 CALL xerbla( 'SSYTRD', -info )
257 RETURN
258 ELSE IF( lquery ) THEN
259 RETURN
260 END IF
261*
262* Quick return if possible
263*
264 IF( n.EQ.0 ) THEN
265 work( 1 ) = 1
266 RETURN
267 END IF
268*
269 nx = n
270 iws = 1
271 IF( nb.GT.1 .AND. nb.LT.n ) THEN
272*
273* Determine when to cross over from blocked to unblocked code
274* (last block is always handled by unblocked code).
275*
276 nx = max( nb, ilaenv( 3, 'SSYTRD', uplo, n, -1, -1, -1 ) )
277 IF( nx.LT.n ) THEN
278*
279* Determine if workspace is large enough for blocked code.
280*
281 ldwork = n
282 iws = ldwork*nb
283 IF( lwork.LT.iws ) THEN
284*
285* Not enough workspace to use optimal NB: determine the
286* minimum value of NB, and reduce NB or force use of
287* unblocked code by setting NX = N.
288*
289 nb = max( lwork / ldwork, 1 )
290 nbmin = ilaenv( 2, 'SSYTRD', uplo, n, -1, -1, -1 )
291 IF( nb.LT.nbmin )
292 $ nx = n
293 END IF
294 ELSE
295 nx = n
296 END IF
297 ELSE
298 nb = 1
299 END IF
300*
301 IF( upper ) THEN
302*
303* Reduce the upper triangle of A.
304* Columns 1:kk are handled by the unblocked method.
305*
306 kk = n - ( ( n-nx+nb-1 ) / nb )*nb
307 DO 20 i = n - nb + 1, kk + 1, -nb
308*
309* Reduce columns i:i+nb-1 to tridiagonal form and form the
310* matrix W which is needed to update the unreduced part of
311* the matrix
312*
313 CALL slatrd( uplo, i+nb-1, nb, a, lda, e, tau, work,
314 $ ldwork )
315*
316* Update the unreduced submatrix A(1:i-1,1:i-1), using an
317* update of the form: A := A - V*W**T - W*V**T
318*
319 CALL ssyr2k( uplo, 'No transpose', i-1, nb, -one, a( 1, i ),
320 $ lda, work, ldwork, one, a, lda )
321*
322* Copy superdiagonal elements back into A, and diagonal
323* elements into D
324*
325 DO 10 j = i, i + nb - 1
326 a( j-1, j ) = e( j-1 )
327 d( j ) = a( j, j )
328 10 CONTINUE
329 20 CONTINUE
330*
331* Use unblocked code to reduce the last or only block
332*
333 CALL ssytd2( uplo, kk, a, lda, d, e, tau, iinfo )
334 ELSE
335*
336* Reduce the lower triangle of A
337*
338 DO 40 i = 1, n - nx, nb
339*
340* Reduce columns i:i+nb-1 to tridiagonal form and form the
341* matrix W which is needed to update the unreduced part of
342* the matrix
343*
344 CALL slatrd( uplo, n-i+1, nb, a( i, i ), lda, e( i ),
345 $ tau( i ), work, ldwork )
346*
347* Update the unreduced submatrix A(i+ib:n,i+ib:n), using
348* an update of the form: A := A - V*W**T - W*V**T
349*
350 CALL ssyr2k( uplo, 'No transpose', n-i-nb+1, nb, -one,
351 $ a( i+nb, i ), lda, work( nb+1 ), ldwork, one,
352 $ a( i+nb, i+nb ), lda )
353*
354* Copy subdiagonal elements back into A, and diagonal
355* elements into D
356*
357 DO 30 j = i, i + nb - 1
358 a( j+1, j ) = e( j )
359 d( j ) = a( j, j )
360 30 CONTINUE
361 40 CONTINUE
362*
363* Use unblocked code to reduce the last or only block
364*
365 CALL ssytd2( uplo, n-i+1, a( i, i ), lda, d( i ), e( i ),
366 $ tau( i ), iinfo )
367 END IF
368*
369 work( 1 ) = sroundup_lwork(lwkopt)
370 RETURN
371*
372* End of SSYTRD
373*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ssyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
SSYR2K
Definition ssyr2k.f:192
subroutine ssytd2(uplo, n, a, lda, d, e, tau, info)
SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity tran...
Definition ssytd2.f:173
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
subroutine slatrd(uplo, n, nb, a, lda, e, tau, w, ldw)
SLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal fo...
Definition slatrd.f:198
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: