LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
ssytd2.f
Go to the documentation of this file.
1*> \brief \b SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity transformation (unblocked algorithm).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SSYTD2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytd2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytd2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytd2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
20*
21* .. Scalar Arguments ..
22* CHARACTER UPLO
23* INTEGER INFO, LDA, N
24* ..
25* .. Array Arguments ..
26* REAL A( LDA, * ), D( * ), E( * ), TAU( * )
27* ..
28*
29*
30*> \par Purpose:
31* =============
32*>
33*> \verbatim
34*>
35*> SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
36*> form T by an orthogonal similarity transformation: Q**T * A * Q = T.
37*> \endverbatim
38*
39* Arguments:
40* ==========
41*
42*> \param[in] UPLO
43*> \verbatim
44*> UPLO is CHARACTER*1
45*> Specifies whether the upper or lower triangular part of the
46*> symmetric matrix A is stored:
47*> = 'U': Upper triangular
48*> = 'L': Lower triangular
49*> \endverbatim
50*>
51*> \param[in] N
52*> \verbatim
53*> N is INTEGER
54*> The order of the matrix A. N >= 0.
55*> \endverbatim
56*>
57*> \param[in,out] A
58*> \verbatim
59*> A is REAL array, dimension (LDA,N)
60*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
61*> n-by-n upper triangular part of A contains the upper
62*> triangular part of the matrix A, and the strictly lower
63*> triangular part of A is not referenced. If UPLO = 'L', the
64*> leading n-by-n lower triangular part of A contains the lower
65*> triangular part of the matrix A, and the strictly upper
66*> triangular part of A is not referenced.
67*> On exit, if UPLO = 'U', the diagonal and first superdiagonal
68*> of A are overwritten by the corresponding elements of the
69*> tridiagonal matrix T, and the elements above the first
70*> superdiagonal, with the array TAU, represent the orthogonal
71*> matrix Q as a product of elementary reflectors; if UPLO
72*> = 'L', the diagonal and first subdiagonal of A are over-
73*> written by the corresponding elements of the tridiagonal
74*> matrix T, and the elements below the first subdiagonal, with
75*> the array TAU, represent the orthogonal matrix Q as a product
76*> of elementary reflectors. See Further Details.
77*> \endverbatim
78*>
79*> \param[in] LDA
80*> \verbatim
81*> LDA is INTEGER
82*> The leading dimension of the array A. LDA >= max(1,N).
83*> \endverbatim
84*>
85*> \param[out] D
86*> \verbatim
87*> D is REAL array, dimension (N)
88*> The diagonal elements of the tridiagonal matrix T:
89*> D(i) = A(i,i).
90*> \endverbatim
91*>
92*> \param[out] E
93*> \verbatim
94*> E is REAL array, dimension (N-1)
95*> The off-diagonal elements of the tridiagonal matrix T:
96*> E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
97*> \endverbatim
98*>
99*> \param[out] TAU
100*> \verbatim
101*> TAU is REAL array, dimension (N-1)
102*> The scalar factors of the elementary reflectors (see Further
103*> Details).
104*> \endverbatim
105*>
106*> \param[out] INFO
107*> \verbatim
108*> INFO is INTEGER
109*> = 0: successful exit
110*> < 0: if INFO = -i, the i-th argument had an illegal value.
111*> \endverbatim
112*
113* Authors:
114* ========
115*
116*> \author Univ. of Tennessee
117*> \author Univ. of California Berkeley
118*> \author Univ. of Colorado Denver
119*> \author NAG Ltd.
120*
121*> \ingroup hetd2
122*
123*> \par Further Details:
124* =====================
125*>
126*> \verbatim
127*>
128*> If UPLO = 'U', the matrix Q is represented as a product of elementary
129*> reflectors
130*>
131*> Q = H(n-1) . . . H(2) H(1).
132*>
133*> Each H(i) has the form
134*>
135*> H(i) = I - tau * v * v**T
136*>
137*> where tau is a real scalar, and v is a real vector with
138*> v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
139*> A(1:i-1,i+1), and tau in TAU(i).
140*>
141*> If UPLO = 'L', the matrix Q is represented as a product of elementary
142*> reflectors
143*>
144*> Q = H(1) H(2) . . . H(n-1).
145*>
146*> Each H(i) has the form
147*>
148*> H(i) = I - tau * v * v**T
149*>
150*> where tau is a real scalar, and v is a real vector with
151*> v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
152*> and tau in TAU(i).
153*>
154*> The contents of A on exit are illustrated by the following examples
155*> with n = 5:
156*>
157*> if UPLO = 'U': if UPLO = 'L':
158*>
159*> ( d e v2 v3 v4 ) ( d )
160*> ( d e v3 v4 ) ( e d )
161*> ( d e v4 ) ( v1 e d )
162*> ( d e ) ( v1 v2 e d )
163*> ( d ) ( v1 v2 v3 e d )
164*>
165*> where d and e denote diagonal and off-diagonal elements of T, and vi
166*> denotes an element of the vector defining H(i).
167*> \endverbatim
168*>
169* =====================================================================
170 SUBROUTINE ssytd2( UPLO, N, A, LDA, D, E, TAU, INFO )
171*
172* -- LAPACK computational routine --
173* -- LAPACK is a software package provided by Univ. of Tennessee, --
174* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175*
176* .. Scalar Arguments ..
177 CHARACTER UPLO
178 INTEGER INFO, LDA, N
179* ..
180* .. Array Arguments ..
181 REAL A( LDA, * ), D( * ), E( * ), TAU( * )
182* ..
183*
184* =====================================================================
185*
186* .. Parameters ..
187 REAL ONE, ZERO, HALF
188 parameter( one = 1.0, zero = 0.0, half = 1.0 / 2.0 )
189* ..
190* .. Local Scalars ..
191 LOGICAL UPPER
192 INTEGER I
193 REAL ALPHA, TAUI
194* ..
195* .. External Subroutines ..
196 EXTERNAL saxpy, slarfg, ssymv, ssyr2, xerbla
197* ..
198* .. External Functions ..
199 LOGICAL LSAME
200 REAL SDOT
201 EXTERNAL lsame, sdot
202* ..
203* .. Intrinsic Functions ..
204 INTRINSIC max, min
205* ..
206* .. Executable Statements ..
207*
208* Test the input parameters
209*
210 info = 0
211 upper = lsame( uplo, 'U' )
212 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
213 info = -1
214 ELSE IF( n.LT.0 ) THEN
215 info = -2
216 ELSE IF( lda.LT.max( 1, n ) ) THEN
217 info = -4
218 END IF
219 IF( info.NE.0 ) THEN
220 CALL xerbla( 'SSYTD2', -info )
221 RETURN
222 END IF
223*
224* Quick return if possible
225*
226 IF( n.LE.0 )
227 $ RETURN
228*
229 IF( upper ) THEN
230*
231* Reduce the upper triangle of A
232*
233 DO 10 i = n - 1, 1, -1
234*
235* Generate elementary reflector H(i) = I - tau * v * v**T
236* to annihilate A(1:i-1,i+1)
237*
238 CALL slarfg( i, a( i, i+1 ), a( 1, i+1 ), 1, taui )
239 e( i ) = a( i, i+1 )
240*
241 IF( taui.NE.zero ) THEN
242*
243* Apply H(i) from both sides to A(1:i,1:i)
244*
245 a( i, i+1 ) = one
246*
247* Compute x := tau * A * v storing x in TAU(1:i)
248*
249 CALL ssymv( uplo, i, taui, a, lda, a( 1, i+1 ), 1,
250 $ zero,
251 $ tau, 1 )
252*
253* Compute w := x - 1/2 * tau * (x**T * v) * v
254*
255 alpha = -half*taui*sdot( i, tau, 1, a( 1, i+1 ), 1 )
256 CALL saxpy( i, alpha, a( 1, i+1 ), 1, tau, 1 )
257*
258* Apply the transformation as a rank-2 update:
259* A := A - v * w**T - w * v**T
260*
261 CALL ssyr2( uplo, i, -one, a( 1, i+1 ), 1, tau, 1, a,
262 $ lda )
263*
264 a( i, i+1 ) = e( i )
265 END IF
266 d( i+1 ) = a( i+1, i+1 )
267 tau( i ) = taui
268 10 CONTINUE
269 d( 1 ) = a( 1, 1 )
270 ELSE
271*
272* Reduce the lower triangle of A
273*
274 DO 20 i = 1, n - 1
275*
276* Generate elementary reflector H(i) = I - tau * v * v**T
277* to annihilate A(i+2:n,i)
278*
279 CALL slarfg( n-i, a( i+1, i ), a( min( i+2, n ), i ), 1,
280 $ taui )
281 e( i ) = a( i+1, i )
282*
283 IF( taui.NE.zero ) THEN
284*
285* Apply H(i) from both sides to A(i+1:n,i+1:n)
286*
287 a( i+1, i ) = one
288*
289* Compute x := tau * A * v storing y in TAU(i:n-1)
290*
291 CALL ssymv( uplo, n-i, taui, a( i+1, i+1 ), lda,
292 $ a( i+1, i ), 1, zero, tau( i ), 1 )
293*
294* Compute w := x - 1/2 * tau * (x**T * v) * v
295*
296 alpha = -half*taui*sdot( n-i, tau( i ), 1, a( i+1,
297 $ i ),
298 $ 1 )
299 CALL saxpy( n-i, alpha, a( i+1, i ), 1, tau( i ), 1 )
300*
301* Apply the transformation as a rank-2 update:
302* A := A - v * w**T - w * v**T
303*
304 CALL ssyr2( uplo, n-i, -one, a( i+1, i ), 1, tau( i ),
305 $ 1,
306 $ a( i+1, i+1 ), lda )
307*
308 a( i+1, i ) = e( i )
309 END IF
310 d( i ) = a( i, i )
311 tau( i ) = taui
312 20 CONTINUE
313 d( n ) = a( n, n )
314 END IF
315*
316 RETURN
317*
318* End of SSYTD2
319*
320 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
subroutine ssymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
SSYMV
Definition ssymv.f:152
subroutine ssyr2(uplo, n, alpha, x, incx, y, incy, a, lda)
SSYR2
Definition ssyr2.f:147
subroutine ssytd2(uplo, n, a, lda, d, e, tau, info)
SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity tran...
Definition ssytd2.f:171
subroutine slarfg(n, alpha, x, incx, tau)
SLARFG generates an elementary reflector (Householder matrix).
Definition slarfg.f:104