LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ssytd2()

subroutine ssytd2 ( character  uplo,
integer  n,
real, dimension( lda, * )  a,
integer  lda,
real, dimension( * )  d,
real, dimension( * )  e,
real, dimension( * )  tau,
integer  info 
)

SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity transformation (unblocked algorithm).

Download SSYTD2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
 form T by an orthogonal similarity transformation: Q**T * A * Q = T.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]A
          A is REAL array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          n-by-n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n-by-n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if UPLO = 'U', the diagonal and first superdiagonal
          of A are overwritten by the corresponding elements of the
          tridiagonal matrix T, and the elements above the first
          superdiagonal, with the array TAU, represent the orthogonal
          matrix Q as a product of elementary reflectors; if UPLO
          = 'L', the diagonal and first subdiagonal of A are over-
          written by the corresponding elements of the tridiagonal
          matrix T, and the elements below the first subdiagonal, with
          the array TAU, represent the orthogonal matrix Q as a product
          of elementary reflectors. See Further Details.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]D
          D is REAL array, dimension (N)
          The diagonal elements of the tridiagonal matrix T:
          D(i) = A(i,i).
[out]E
          E is REAL array, dimension (N-1)
          The off-diagonal elements of the tridiagonal matrix T:
          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
[out]TAU
          TAU is REAL array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  If UPLO = 'U', the matrix Q is represented as a product of elementary
  reflectors

     Q = H(n-1) . . . H(2) H(1).

  Each H(i) has the form

     H(i) = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
  A(1:i-1,i+1), and tau in TAU(i).

  If UPLO = 'L', the matrix Q is represented as a product of elementary
  reflectors

     Q = H(1) H(2) . . . H(n-1).

  Each H(i) has the form

     H(i) = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
  and tau in TAU(i).

  The contents of A on exit are illustrated by the following examples
  with n = 5:

  if UPLO = 'U':                       if UPLO = 'L':

    (  d   e   v2  v3  v4 )              (  d                  )
    (      d   e   v3  v4 )              (  e   d              )
    (          d   e   v4 )              (  v1  e   d          )
    (              d   e  )              (  v1  v2  e   d      )
    (                  d  )              (  v1  v2  v3  e   d  )

  where d and e denote diagonal and off-diagonal elements of T, and vi
  denotes an element of the vector defining H(i).

Definition at line 172 of file ssytd2.f.

173*
174* -- LAPACK computational routine --
175* -- LAPACK is a software package provided by Univ. of Tennessee, --
176* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
177*
178* .. Scalar Arguments ..
179 CHARACTER UPLO
180 INTEGER INFO, LDA, N
181* ..
182* .. Array Arguments ..
183 REAL A( LDA, * ), D( * ), E( * ), TAU( * )
184* ..
185*
186* =====================================================================
187*
188* .. Parameters ..
189 REAL ONE, ZERO, HALF
190 parameter( one = 1.0, zero = 0.0, half = 1.0 / 2.0 )
191* ..
192* .. Local Scalars ..
193 LOGICAL UPPER
194 INTEGER I
195 REAL ALPHA, TAUI
196* ..
197* .. External Subroutines ..
198 EXTERNAL saxpy, slarfg, ssymv, ssyr2, xerbla
199* ..
200* .. External Functions ..
201 LOGICAL LSAME
202 REAL SDOT
203 EXTERNAL lsame, sdot
204* ..
205* .. Intrinsic Functions ..
206 INTRINSIC max, min
207* ..
208* .. Executable Statements ..
209*
210* Test the input parameters
211*
212 info = 0
213 upper = lsame( uplo, 'U' )
214 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
215 info = -1
216 ELSE IF( n.LT.0 ) THEN
217 info = -2
218 ELSE IF( lda.LT.max( 1, n ) ) THEN
219 info = -4
220 END IF
221 IF( info.NE.0 ) THEN
222 CALL xerbla( 'SSYTD2', -info )
223 RETURN
224 END IF
225*
226* Quick return if possible
227*
228 IF( n.LE.0 )
229 $ RETURN
230*
231 IF( upper ) THEN
232*
233* Reduce the upper triangle of A
234*
235 DO 10 i = n - 1, 1, -1
236*
237* Generate elementary reflector H(i) = I - tau * v * v**T
238* to annihilate A(1:i-1,i+1)
239*
240 CALL slarfg( i, a( i, i+1 ), a( 1, i+1 ), 1, taui )
241 e( i ) = a( i, i+1 )
242*
243 IF( taui.NE.zero ) THEN
244*
245* Apply H(i) from both sides to A(1:i,1:i)
246*
247 a( i, i+1 ) = one
248*
249* Compute x := tau * A * v storing x in TAU(1:i)
250*
251 CALL ssymv( uplo, i, taui, a, lda, a( 1, i+1 ), 1, zero,
252 $ tau, 1 )
253*
254* Compute w := x - 1/2 * tau * (x**T * v) * v
255*
256 alpha = -half*taui*sdot( i, tau, 1, a( 1, i+1 ), 1 )
257 CALL saxpy( i, alpha, a( 1, i+1 ), 1, tau, 1 )
258*
259* Apply the transformation as a rank-2 update:
260* A := A - v * w**T - w * v**T
261*
262 CALL ssyr2( uplo, i, -one, a( 1, i+1 ), 1, tau, 1, a,
263 $ lda )
264*
265 a( i, i+1 ) = e( i )
266 END IF
267 d( i+1 ) = a( i+1, i+1 )
268 tau( i ) = taui
269 10 CONTINUE
270 d( 1 ) = a( 1, 1 )
271 ELSE
272*
273* Reduce the lower triangle of A
274*
275 DO 20 i = 1, n - 1
276*
277* Generate elementary reflector H(i) = I - tau * v * v**T
278* to annihilate A(i+2:n,i)
279*
280 CALL slarfg( n-i, a( i+1, i ), a( min( i+2, n ), i ), 1,
281 $ taui )
282 e( i ) = a( i+1, i )
283*
284 IF( taui.NE.zero ) THEN
285*
286* Apply H(i) from both sides to A(i+1:n,i+1:n)
287*
288 a( i+1, i ) = one
289*
290* Compute x := tau * A * v storing y in TAU(i:n-1)
291*
292 CALL ssymv( uplo, n-i, taui, a( i+1, i+1 ), lda,
293 $ a( i+1, i ), 1, zero, tau( i ), 1 )
294*
295* Compute w := x - 1/2 * tau * (x**T * v) * v
296*
297 alpha = -half*taui*sdot( n-i, tau( i ), 1, a( i+1, i ),
298 $ 1 )
299 CALL saxpy( n-i, alpha, a( i+1, i ), 1, tau( i ), 1 )
300*
301* Apply the transformation as a rank-2 update:
302* A := A - v * w**T - w * v**T
303*
304 CALL ssyr2( uplo, n-i, -one, a( i+1, i ), 1, tau( i ), 1,
305 $ a( i+1, i+1 ), lda )
306*
307 a( i+1, i ) = e( i )
308 END IF
309 d( i ) = a( i, i )
310 tau( i ) = taui
311 20 CONTINUE
312 d( n ) = a( n, n )
313 END IF
314*
315 RETURN
316*
317* End of SSYTD2
318*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine saxpy(n, sa, sx, incx, sy, incy)
SAXPY
Definition saxpy.f:89
real function sdot(n, sx, incx, sy, incy)
SDOT
Definition sdot.f:82
subroutine ssymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
SSYMV
Definition ssymv.f:152
subroutine ssyr2(uplo, n, alpha, x, incx, y, incy, a, lda)
SSYR2
Definition ssyr2.f:147
subroutine slarfg(n, alpha, x, incx, tau)
SLARFG generates an elementary reflector (Householder matrix).
Definition slarfg.f:106
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: