LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
|
subroutine slatrd | ( | character | uplo, |
integer | n, | ||
integer | nb, | ||
real, dimension( lda, * ) | a, | ||
integer | lda, | ||
real, dimension( * ) | e, | ||
real, dimension( * ) | tau, | ||
real, dimension( ldw, * ) | w, | ||
integer | ldw | ||
) |
SLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal similarity transformation.
Download SLATRD + dependencies [TGZ] [ZIP] [TXT]
SLATRD reduces NB rows and columns of a real symmetric matrix A to symmetric tridiagonal form by an orthogonal similarity transformation Q**T * A * Q, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of A. If UPLO = 'U', SLATRD reduces the last NB rows and columns of a matrix, of which the upper triangle is supplied; if UPLO = 'L', SLATRD reduces the first NB rows and columns of a matrix, of which the lower triangle is supplied. This is an auxiliary routine called by SSYTRD.
[in] | UPLO | UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular |
[in] | N | N is INTEGER The order of the matrix A. |
[in] | NB | NB is INTEGER The number of rows and columns to be reduced. |
[in,out] | A | A is REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit: if UPLO = 'U', the last NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements above the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = 'L', the first NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements below the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. |
[in] | LDA | LDA is INTEGER The leading dimension of the array A. LDA >= (1,N). |
[out] | E | E is REAL array, dimension (N-1) If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal elements of the last NB columns of the reduced matrix; if UPLO = 'L', E(1:nb) contains the subdiagonal elements of the first NB columns of the reduced matrix. |
[out] | TAU | TAU is REAL array, dimension (N-1) The scalar factors of the elementary reflectors, stored in TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. See Further Details. |
[out] | W | W is REAL array, dimension (LDW,NB) The n-by-nb matrix W required to update the unreduced part of A. |
[in] | LDW | LDW is INTEGER The leading dimension of the array W. LDW >= max(1,N). |
If UPLO = 'U', the matrix Q is represented as a product of elementary reflectors Q = H(n) H(n-1) . . . H(n-nb+1). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), and tau in TAU(i-1). If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and tau in TAU(i). The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a symmetric rank-2k update of the form: A := A - V*W**T - W*V**T. The contents of A on exit are illustrated by the following examples with n = 5 and nb = 2: if UPLO = 'U': if UPLO = 'L': ( a a a v4 v5 ) ( d ) ( a a v4 v5 ) ( 1 d ) ( a 1 v5 ) ( v1 1 a ) ( d 1 ) ( v1 v2 a a ) ( d ) ( v1 v2 a a a ) where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and vi denotes an element of the vector defining H(i).
Definition at line 197 of file slatrd.f.