LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgemv()

subroutine sgemv ( character trans,
integer m,
integer n,
real alpha,
real, dimension(lda,*) a,
integer lda,
real, dimension(*) x,
integer incx,
real beta,
real, dimension(*) y,
integer incy )

SGEMV

Purpose:
!>
!> SGEMV  performs one of the matrix-vector operations
!>
!>    y := alpha*A*x + beta*y,   or   y := alpha*A**T*x + beta*y,
!>
!> where alpha and beta are scalars, x and y are vectors and A is an
!> m by n matrix.
!> 
Parameters
[in]TRANS
!>          TRANS is CHARACTER*1
!>           On entry, TRANS specifies the operation to be performed as
!>           follows:
!>
!>              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y.
!>
!>              TRANS = 'T' or 't'   y := alpha*A**T*x + beta*y.
!>
!>              TRANS = 'C' or 'c'   y := alpha*A**T*x + beta*y.
!> 
[in]M
!>          M is INTEGER
!>           On entry, M specifies the number of rows of the matrix A.
!>           M must be at least zero.
!> 
[in]N
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix A.
!>           N must be at least zero.
!> 
[in]ALPHA
!>          ALPHA is REAL
!>           On entry, ALPHA specifies the scalar alpha.
!> 
[in]A
!>          A is REAL array, dimension ( LDA, N )
!>           Before entry, the leading m by n part of the array A must
!>           contain the matrix of coefficients.
!> 
[in]LDA
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the calling (sub) program. LDA must be at least
!>           max( 1, m ).
!> 
[in]X
!>          X is REAL array, dimension at least
!>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
!>           Before entry, the incremented array X must contain the
!>           vector x.
!> 
[in]INCX
!>          INCX is INTEGER
!>           On entry, INCX specifies the increment for the elements of
!>           X. INCX must not be zero.
!> 
[in]BETA
!>          BETA is REAL
!>           On entry, BETA specifies the scalar beta. When BETA is
!>           supplied as zero then Y need not be set on input.
!> 
[in,out]Y
!>          Y is REAL array, dimension at least
!>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
!>           and at least
!>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
!>           Before entry with BETA non-zero, the incremented array Y
!>           must contain the vector y. On exit, Y is overwritten by the
!>           updated vector y.
!>           If either m or n is zero, then Y not referenced and the function
!>           performs a quick return.
!> 
[in]INCY
!>          INCY is INTEGER
!>           On entry, INCY specifies the increment for the elements of
!>           Y. INCY must not be zero.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  Level 2 Blas routine.
!>  The vector and matrix arguments are not referenced when N = 0, or M = 0
!>
!>  -- Written on 22-October-1986.
!>     Jack Dongarra, Argonne National Lab.
!>     Jeremy Du Croz, Nag Central Office.
!>     Sven Hammarling, Nag Central Office.
!>     Richard Hanson, Sandia National Labs.
!> 

Definition at line 157 of file sgemv.f.

158*
159* -- Reference BLAS level2 routine --
160* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
161* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
162*
163* .. Scalar Arguments ..
164 REAL ALPHA,BETA
165 INTEGER INCX,INCY,LDA,M,N
166 CHARACTER TRANS
167* ..
168* .. Array Arguments ..
169 REAL A(LDA,*),X(*),Y(*)
170* ..
171*
172* =====================================================================
173*
174* .. Parameters ..
175 REAL ONE,ZERO
176 parameter(one=1.0e+0,zero=0.0e+0)
177* ..
178* .. Local Scalars ..
179 REAL TEMP
180 INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
181* ..
182* .. External Functions ..
183 LOGICAL LSAME
184 EXTERNAL lsame
185* ..
186* .. External Subroutines ..
187 EXTERNAL xerbla
188* ..
189* .. Intrinsic Functions ..
190 INTRINSIC max
191* ..
192*
193* Test the input parameters.
194*
195 info = 0
196 IF (.NOT.lsame(trans,'N') .AND. .NOT.lsame(trans,'T') .AND.
197 + .NOT.lsame(trans,'C')) THEN
198 info = 1
199 ELSE IF (m.LT.0) THEN
200 info = 2
201 ELSE IF (n.LT.0) THEN
202 info = 3
203 ELSE IF (lda.LT.max(1,m)) THEN
204 info = 6
205 ELSE IF (incx.EQ.0) THEN
206 info = 8
207 ELSE IF (incy.EQ.0) THEN
208 info = 11
209 END IF
210 IF (info.NE.0) THEN
211 CALL xerbla('SGEMV ',info)
212 RETURN
213 END IF
214*
215* Quick return if possible.
216*
217 IF ((m.EQ.0) .OR. (n.EQ.0) .OR.
218 + ((alpha.EQ.zero).AND. (beta.EQ.one))) RETURN
219*
220* Set LENX and LENY, the lengths of the vectors x and y, and set
221* up the start points in X and Y.
222*
223 IF (lsame(trans,'N')) THEN
224 lenx = n
225 leny = m
226 ELSE
227 lenx = m
228 leny = n
229 END IF
230 IF (incx.GT.0) THEN
231 kx = 1
232 ELSE
233 kx = 1 - (lenx-1)*incx
234 END IF
235 IF (incy.GT.0) THEN
236 ky = 1
237 ELSE
238 ky = 1 - (leny-1)*incy
239 END IF
240*
241* Start the operations. In this version the elements of A are
242* accessed sequentially with one pass through A.
243*
244* First form y := beta*y.
245*
246 IF (beta.NE.one) THEN
247 IF (incy.EQ.1) THEN
248 IF (beta.EQ.zero) THEN
249 DO 10 i = 1,leny
250 y(i) = zero
251 10 CONTINUE
252 ELSE
253 DO 20 i = 1,leny
254 y(i) = beta*y(i)
255 20 CONTINUE
256 END IF
257 ELSE
258 iy = ky
259 IF (beta.EQ.zero) THEN
260 DO 30 i = 1,leny
261 y(iy) = zero
262 iy = iy + incy
263 30 CONTINUE
264 ELSE
265 DO 40 i = 1,leny
266 y(iy) = beta*y(iy)
267 iy = iy + incy
268 40 CONTINUE
269 END IF
270 END IF
271 END IF
272 IF (alpha.EQ.zero) RETURN
273 IF (lsame(trans,'N')) THEN
274*
275* Form y := alpha*A*x + y.
276*
277 jx = kx
278 IF (incy.EQ.1) THEN
279 DO 60 j = 1,n
280 temp = alpha*x(jx)
281 DO 50 i = 1,m
282 y(i) = y(i) + temp*a(i,j)
283 50 CONTINUE
284 jx = jx + incx
285 60 CONTINUE
286 ELSE
287 DO 80 j = 1,n
288 temp = alpha*x(jx)
289 iy = ky
290 DO 70 i = 1,m
291 y(iy) = y(iy) + temp*a(i,j)
292 iy = iy + incy
293 70 CONTINUE
294 jx = jx + incx
295 80 CONTINUE
296 END IF
297 ELSE
298*
299* Form y := alpha*A**T*x + y.
300*
301 jy = ky
302 IF (incx.EQ.1) THEN
303 DO 100 j = 1,n
304 temp = zero
305 DO 90 i = 1,m
306 temp = temp + a(i,j)*x(i)
307 90 CONTINUE
308 y(jy) = y(jy) + alpha*temp
309 jy = jy + incy
310 100 CONTINUE
311 ELSE
312 DO 120 j = 1,n
313 temp = zero
314 ix = kx
315 DO 110 i = 1,m
316 temp = temp + a(i,j)*x(ix)
317 ix = ix + incx
318 110 CONTINUE
319 y(jy) = y(jy) + alpha*temp
320 jy = jy + incy
321 120 CONTINUE
322 END IF
323 END IF
324*
325 RETURN
326*
327* End of SGEMV
328*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: