LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dgedmd | ( | character, intent(in) | jobs, |
character, intent(in) | jobz, | ||
character, intent(in) | jobr, | ||
character, intent(in) | jobf, | ||
integer, intent(in) | whtsvd, | ||
integer, intent(in) | m, | ||
integer, intent(in) | n, | ||
real(kind=wp), dimension(ldx,*), intent(inout) | x, | ||
integer, intent(in) | ldx, | ||
real(kind=wp), dimension(ldy,*), intent(inout) | y, | ||
integer, intent(in) | ldy, | ||
integer, intent(in) | nrnk, | ||
real(kind=wp), intent(in) | tol, | ||
integer, intent(out) | k, | ||
real(kind=wp), dimension(*), intent(out) | reig, | ||
real(kind=wp), dimension(*), intent(out) | imeig, | ||
real(kind=wp), dimension(ldz,*), intent(out) | z, | ||
integer, intent(in) | ldz, | ||
real(kind=wp), dimension(*), intent(out) | res, | ||
real(kind=wp), dimension(ldb,*), intent(out) | b, | ||
integer, intent(in) | ldb, | ||
real(kind=wp), dimension(ldw,*), intent(out) | w, | ||
integer, intent(in) | ldw, | ||
real(kind=wp), dimension(lds,*), intent(out) | s, | ||
integer, intent(in) | lds, | ||
real(kind=wp), dimension(*), intent(out) | work, | ||
integer, intent(in) | lwork, | ||
integer, dimension(*), intent(out) | iwork, | ||
integer, intent(in) | liwork, | ||
integer, intent(out) | info ) |
DGEDMD computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.
!> DGEDMD computes the Dynamic Mode Decomposition (DMD) for !> a pair of data snapshot matrices. For the input matrices !> X and Y such that Y = A*X with an unaccessible matrix !> A, DGEDMD computes a certain number of Ritz pairs of A using !> the standard Rayleigh-Ritz extraction from a subspace of !> range(X) that is determined using the leading left singular !> vectors of X. Optionally, DGEDMD returns the residuals !> of the computed Ritz pairs, the information needed for !> a refinement of the Ritz vectors, or the eigenvectors of !> the Exact DMD. !> For further details see the references listed !> below. For more details of the implementation see [3]. !>
!> [1] P. Schmid: Dynamic mode decomposition of numerical !> and experimental data, !> Journal of Fluid Mechanics 656, 5-28, 2010. !> [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal !> decompositions: analysis and enhancements, !> SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. !> [3] Z. Drmac: A LAPACK implementation of the Dynamic !> Mode Decomposition I. Technical report. AIMDyn Inc. !> and LAPACK Working Note 298. !> [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. !> Brunton, N. Kutz: On Dynamic Mode Decomposition: !> Theory and Applications, Journal of Computational !> Dynamics 1(2), 391 -421, 2014. !>
!> Developed and coded by Zlatko Drmac, Faculty of Science, !> University of Zagreb; drmac@math.hr !> In cooperation with !> AIMdyn Inc., Santa Barbara, CA. !> and supported by !> - DARPA SBIR project Contract No: W31P4Q-21-C-0007 !> - DARPA PAI project Contract No: HR0011-18-9-0033 !> - DARPA MoDyL project !> Contract No: HR0011-16-C-0116 !> Any opinions, findings and conclusions or recommendations !> expressed in this material are those of the author and !> do not necessarily reflect the views of the DARPA SBIR !> Program Office !>
!> Approved for Public Release, Distribution Unlimited. !> Cleared by DARPA on September 29, 2022 !>
[in] | JOBS | !> JOBS (input) is CHARACTER*1 !> Determines whether the initial data snapshots are scaled !> by a diagonal matrix. !> 'S' :: The data snapshots matrices X and Y are multiplied !> with a diagonal matrix D so that X*D has unit !> nonzero columns (in the Euclidean 2-norm) !> 'C' :: The snapshots are scaled as with the 'S' option. !> If it is found that an i-th column of X is zero !> vector and the corresponding i-th column of Y is !> non-zero, then the i-th column of Y is set to !> zero and a warning flag is raised. !> 'Y' :: The data snapshots matrices X and Y are multiplied !> by a diagonal matrix D so that Y*D has unit !> nonzero columns (in the Euclidean 2-norm) !> 'N' :: No data scaling. !> |
[in] | JOBZ | !> JOBZ (input) CHARACTER*1 !> Determines whether the eigenvectors (Koopman modes) will !> be computed. !> 'V' :: The eigenvectors (Koopman modes) will be computed !> and returned in the matrix Z. !> See the description of Z. !> 'F' :: The eigenvectors (Koopman modes) will be returned !> in factored form as the product X(:,1:K)*W, where X !> contains a POD basis (leading left singular vectors !> of the data matrix X) and W contains the eigenvectors !> of the corresponding Rayleigh quotient. !> See the descriptions of K, X, W, Z. !> 'N' :: The eigenvectors are not computed. !> |
[in] | JOBR | !> JOBR (input) CHARACTER*1 !> Determines whether to compute the residuals. !> 'R' :: The residuals for the computed eigenpairs will be !> computed and stored in the array RES. !> See the description of RES. !> For this option to be legal, JOBZ must be 'V'. !> 'N' :: The residuals are not computed. !> |
[in] | JOBF | !> JOBF (input) CHARACTER*1 !> Specifies whether to store information needed for post- !> processing (e.g. computing refined Ritz vectors) !> 'R' :: The matrix needed for the refinement of the Ritz !> vectors is computed and stored in the array B. !> See the description of B. !> 'E' :: The unscaled eigenvectors of the Exact DMD are !> computed and returned in the array B. See the !> description of B. !> 'N' :: No eigenvector refinement data is computed. !> |
[in] | WHTSVD | !> WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } !> Allows for a selection of the SVD algorithm from the !> LAPACK library. !> 1 :: DGESVD (the QR SVD algorithm) !> 2 :: DGESDD (the Divide and Conquer algorithm; if enough !> workspace available, this is the fastest option) !> 3 :: DGESVDQ (the preconditioned QR SVD ; this and 4 !> are the most accurate options) !> 4 :: DGEJSV (the preconditioned Jacobi SVD; this and 3 !> are the most accurate options) !> For the four methods above, a significant difference in !> the accuracy of small singular values is possible if !> the snapshots vary in norm so that X is severely !> ill-conditioned. If small (smaller than EPS*||X||) !> singular values are of interest and JOBS=='N', then !> the options (3, 4) give the most accurate results, where !> the option 4 is slightly better and with stronger !> theoretical background. !> If JOBS=='S', i.e. the columns of X will be normalized, !> then all methods give nearly equally accurate results. !> |
[in] | M | !> M (input) INTEGER, M>= 0 !> The state space dimension (the row dimension of X, Y). !> |
[in] | N | !> N (input) INTEGER, 0 <= N <= M !> The number of data snapshot pairs !> (the number of columns of X and Y). !> |
[in,out] | X | !> X (input/output) REAL(KIND=WP) M-by-N array !> > On entry, X contains the data snapshot matrix X. It is !> assumed that the column norms of X are in the range of !> the normalized floating point numbers. !> < On exit, the leading K columns of X contain a POD basis, !> i.e. the leading K left singular vectors of the input !> data matrix X, U(:,1:K). All N columns of X contain all !> left singular vectors of the input matrix X. !> See the descriptions of K, Z and W. !> |
[in] | LDX | !> LDX (input) INTEGER, LDX >= M !> The leading dimension of the array X. !> |
[in,out] | Y | !> Y (input/workspace/output) REAL(KIND=WP) M-by-N array !> > On entry, Y contains the data snapshot matrix Y !> < On exit, !> If JOBR == 'R', the leading K columns of Y contain !> the residual vectors for the computed Ritz pairs. !> See the description of RES. !> If JOBR == 'N', Y contains the original input data, !> scaled according to the value of JOBS. !> |
[in] | LDY | !> LDY (input) INTEGER , LDY >= M !> The leading dimension of the array Y. !> |
[in] | NRNK | !> NRNK (input) INTEGER !> Determines the mode how to compute the numerical rank, !> i.e. how to truncate small singular values of the input !> matrix X. On input, if !> NRNK = -1 :: i-th singular value sigma(i) is truncated !> if sigma(i) <= TOL*sigma(1). !> This option is recommended. !> NRNK = -2 :: i-th singular value sigma(i) is truncated !> if sigma(i) <= TOL*sigma(i-1) !> This option is included for R&D purposes. !> It requires highly accurate SVD, which !> may not be feasible. !> !> The numerical rank can be enforced by using positive !> value of NRNK as follows: !> 0 < NRNK <= N :: at most NRNK largest singular values !> will be used. If the number of the computed nonzero !> singular values is less than NRNK, then only those !> nonzero values will be used and the actually used !> dimension is less than NRNK. The actual number of !> the nonzero singular values is returned in the variable !> K. See the descriptions of TOL and K. !> |
[in] | TOL | !> TOL (input) REAL(KIND=WP), 0 <= TOL < 1 !> The tolerance for truncating small singular values. !> See the description of NRNK. !> |
[out] | K | !> K (output) INTEGER, 0 <= K <= N !> The dimension of the POD basis for the data snapshot !> matrix X and the number of the computed Ritz pairs. !> The value of K is determined according to the rule set !> by the parameters NRNK and TOL. !> See the descriptions of NRNK and TOL. !> |
[out] | REIG | !> REIG (output) REAL(KIND=WP) N-by-1 array !> The leading K (K<=N) entries of REIG contain !> the real parts of the computed eigenvalues !> REIG(1:K) + sqrt(-1)*IMEIG(1:K). !> See the descriptions of K, IMEIG, and Z. !> |
[out] | IMEIG | !> IMEIG (output) REAL(KIND=WP) N-by-1 array !> The leading K (K<=N) entries of IMEIG contain !> the imaginary parts of the computed eigenvalues !> REIG(1:K) + sqrt(-1)*IMEIG(1:K). !> The eigenvalues are determined as follows: !> If IMEIG(i) == 0, then the corresponding eigenvalue is !> real, LAMBDA(i) = REIG(i). !> If IMEIG(i)>0, then the corresponding complex !> conjugate pair of eigenvalues reads !> LAMBDA(i) = REIG(i) + sqrt(-1)*IMAG(i) !> LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i) !> That is, complex conjugate pairs have consecutive !> indices (i,i+1), with the positive imaginary part !> listed first. !> See the descriptions of K, REIG, and Z. !> |
[out] | Z | !> Z (workspace/output) REAL(KIND=WP) M-by-N array !> If JOBZ =='V' then !> Z contains real Ritz vectors as follows: !> If IMEIG(i)=0, then Z(:,i) is an eigenvector of !> the i-th Ritz value; ||Z(:,i)||_2=1. !> If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then !> [Z(:,i) Z(:,i+1)] span an invariant subspace and !> the Ritz values extracted from this subspace are !> REIG(i) + sqrt(-1)*IMEIG(i) and !> REIG(i) - sqrt(-1)*IMEIG(i). !> The corresponding eigenvectors are !> Z(:,i) + sqrt(-1)*Z(:,i+1) and !> Z(:,i) - sqrt(-1)*Z(:,i+1), respectively. !> || Z(:,i:i+1)||_F = 1. !> If JOBZ == 'F', then the above descriptions hold for !> the columns of X(:,1:K)*W(1:K,1:K), where the columns !> of W(1:k,1:K) are the computed eigenvectors of the !> K-by-K Rayleigh quotient. The columns of W(1:K,1:K) !> are similarly structured: If IMEIG(i) == 0 then !> X(:,1:K)*W(:,i) is an eigenvector, and if IMEIG(i)>0 !> then X(:,1:K)*W(:,i)+sqrt(-1)*X(:,1:K)*W(:,i+1) and !> X(:,1:K)*W(:,i)-sqrt(-1)*X(:,1:K)*W(:,i+1) !> are the eigenvectors of LAMBDA(i), LAMBDA(i+1). !> See the descriptions of REIG, IMEIG, X and W. !> |
[in] | LDZ | !> LDZ (input) INTEGER , LDZ >= M !> The leading dimension of the array Z. !> |
[out] | RES | !> RES (output) REAL(KIND=WP) N-by-1 array !> RES(1:K) contains the residuals for the K computed !> Ritz pairs. !> If LAMBDA(i) is real, then !> RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2. !> If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair !> then !> RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F !> where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ] !> [-imag(LAMBDA(i)) real(LAMBDA(i)) ]. !> It holds that !> RES(i) = || A*ZC(:,i) - LAMBDA(i) *ZC(:,i) ||_2 !> RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2 !> where ZC(:,i) = Z(:,i) + sqrt(-1)*Z(:,i+1) !> ZC(:,i+1) = Z(:,i) - sqrt(-1)*Z(:,i+1) !> See the description of REIG, IMEIG and Z. !> |
[out] | B | !> B (output) REAL(KIND=WP) M-by-N array. !> IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can !> be used for computing the refined vectors; see further !> details in the provided references. !> If JOBF == 'E', B(1:M,1;K) contains !> A*U(:,1:K)*W(1:K,1:K), which are the vectors from the !> Exact DMD, up to scaling by the inverse eigenvalues. !> If JOBF =='N', then B is not referenced. !> See the descriptions of X, W, K. !> |
[in] | LDB | !> LDB (input) INTEGER, LDB >= M !> The leading dimension of the array B. !> |
[out] | W | !> W (workspace/output) REAL(KIND=WP) N-by-N array !> On exit, W(1:K,1:K) contains the K computed !> eigenvectors of the matrix Rayleigh quotient (real and !> imaginary parts for each complex conjugate pair of the !> eigenvalues). The Ritz vectors (returned in Z) are the !> product of X (containing a POD basis for the input !> matrix X) and W. See the descriptions of K, S, X and Z. !> W is also used as a workspace to temporarily store the !> right singular vectors of X. !> |
[in] | LDW | !> LDW (input) INTEGER, LDW >= N !> The leading dimension of the array W. !> |
[out] | S | !> S (workspace/output) REAL(KIND=WP) N-by-N array !> The array S(1:K,1:K) is used for the matrix Rayleigh !> quotient. This content is overwritten during !> the eigenvalue decomposition by DGEEV. !> See the description of K. !> |
[in] | LDS | !> LDS (input) INTEGER, LDS >= N !> The leading dimension of the array S. !> |
[out] | WORK | !> WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array !> On exit, WORK(1:N) contains the singular values of !> X (for JOBS=='N') or column scaled X (JOBS=='S', 'C'). !> If WHTSVD==4, then WORK(N+1) and WORK(N+2) contain !> scaling factor WORK(N+2)/WORK(N+1) used to scale X !> and Y to avoid overflow in the SVD of X. !> This may be of interest if the scaling option is off !> and as many as possible smallest eigenvalues are !> desired to the highest feasible accuracy. !> If the call to DGEDMD is only workspace query, then !> WORK(1) contains the minimal workspace length and !> WORK(2) is the optimal workspace length. Hence, the !> leng of work is at least 2. !> See the description of LWORK. !> |
[in] | LWORK | !> LWORK (input) INTEGER !> The minimal length of the workspace vector WORK. !> LWORK is calculated as follows: !> If WHTSVD == 1 :: !> If JOBZ == 'V', then !> LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,4*N)). !> If JOBZ == 'N' then !> LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,3*N)). !> Here LWORK_SVD = MAX(1,3*N+M,5*N) is the minimal !> workspace length of DGESVD. !> If WHTSVD == 2 :: !> If JOBZ == 'V', then !> LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,4*N)) !> If JOBZ == 'N', then !> LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,3*N)) !> Here LWORK_SVD = MAX(M, 5*N*N+4*N)+3*N*N is the !> minimal workspace length of DGESDD. !> If WHTSVD == 3 :: !> If JOBZ == 'V', then !> LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,4*N)) !> If JOBZ == 'N', then !> LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,3*N)) !> Here LWORK_SVD = N+M+MAX(3*N+1, !> MAX(1,3*N+M,5*N),MAX(1,N)) !> is the minimal workspace length of DGESVDQ. !> If WHTSVD == 4 :: !> If JOBZ == 'V', then !> LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,4*N)) !> If JOBZ == 'N', then !> LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,3*N)) !> Here LWORK_SVD = MAX(7,2*M+N,6*N+2*N*N) is the !> minimal workspace length of DGEJSV. !> The above expressions are not simplified in order to !> make the usage of WORK more transparent, and for !> easier checking. In any case, LWORK >= 2. !> If on entry LWORK = -1, then a workspace query is !> assumed and the procedure only computes the minimal !> and the optimal workspace lengths for both WORK and !> IWORK. See the descriptions of WORK and IWORK. !> |
[out] | IWORK | !> IWORK (workspace/output) INTEGER LIWORK-by-1 array !> Workspace that is required only if WHTSVD equals !> 2 , 3 or 4. (See the description of WHTSVD). !> If on entry LWORK =-1 or LIWORK=-1, then the !> minimal length of IWORK is computed and returned in !> IWORK(1). See the description of LIWORK. !> |
[in] | LIWORK | !> LIWORK (input) INTEGER !> The minimal length of the workspace vector IWORK. !> If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 !> If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N)) !> If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1) !> If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N) !> If on entry LIWORK = -1, then a workspace query is !> assumed and the procedure only computes the minimal !> and the optimal workspace lengths for both WORK and !> IWORK. See the descriptions of WORK and IWORK. !> |
[out] | INFO | !> INFO (output) INTEGER !> -i < 0 :: On entry, the i-th argument had an !> illegal value !> = 0 :: Successful return. !> = 1 :: Void input. Quick exit (M=0 or N=0). !> = 2 :: The SVD computation of X did not converge. !> Suggestion: Check the input data and/or !> repeat with different WHTSVD. !> = 3 :: The computation of the eigenvalues did not !> converge. !> = 4 :: If data scaling was requested on input and !> the procedure found inconsistency in the data !> such that for some column index i, !> X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set !> to zero if JOBS=='C'. The computation proceeds !> with original or modified data and warning !> flag is set with INFO=4. !> |
Definition at line 530 of file dgedmd.f90.