LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dpotf2.f
Go to the documentation of this file.
1*> \brief \b DPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DPOTF2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpotf2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpotf2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpotf2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO )
22*
23* .. Scalar Arguments ..
24* CHARACTER UPLO
25* INTEGER INFO, LDA, N
26* ..
27* .. Array Arguments ..
28* DOUBLE PRECISION A( LDA, * )
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> DPOTF2 computes the Cholesky factorization of a real symmetric
38*> positive definite matrix A.
39*>
40*> The factorization has the form
41*> A = U**T * U , if UPLO = 'U', or
42*> A = L * L**T, if UPLO = 'L',
43*> where U is an upper triangular matrix and L is lower triangular.
44*>
45*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
46*> \endverbatim
47*
48* Arguments:
49* ==========
50*
51*> \param[in] UPLO
52*> \verbatim
53*> UPLO is CHARACTER*1
54*> Specifies whether the upper or lower triangular part of the
55*> symmetric matrix A is stored.
56*> = 'U': Upper triangular
57*> = 'L': Lower triangular
58*> \endverbatim
59*>
60*> \param[in] N
61*> \verbatim
62*> N is INTEGER
63*> The order of the matrix A. N >= 0.
64*> \endverbatim
65*>
66*> \param[in,out] A
67*> \verbatim
68*> A is DOUBLE PRECISION array, dimension (LDA,N)
69*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
70*> n by n upper triangular part of A contains the upper
71*> triangular part of the matrix A, and the strictly lower
72*> triangular part of A is not referenced. If UPLO = 'L', the
73*> leading n by n lower triangular part of A contains the lower
74*> triangular part of the matrix A, and the strictly upper
75*> triangular part of A is not referenced.
76*>
77*> On exit, if INFO = 0, the factor U or L from the Cholesky
78*> factorization A = U**T *U or A = L*L**T.
79*> \endverbatim
80*>
81*> \param[in] LDA
82*> \verbatim
83*> LDA is INTEGER
84*> The leading dimension of the array A. LDA >= max(1,N).
85*> \endverbatim
86*>
87*> \param[out] INFO
88*> \verbatim
89*> INFO is INTEGER
90*> = 0: successful exit
91*> < 0: if INFO = -k, the k-th argument had an illegal value
92*> > 0: if INFO = k, the leading principal minor of order k
93*> is not positive, and the factorization could not be
94*> completed.
95*> \endverbatim
96*
97* Authors:
98* ========
99*
100*> \author Univ. of Tennessee
101*> \author Univ. of California Berkeley
102*> \author Univ. of Colorado Denver
103*> \author NAG Ltd.
104*
105*> \ingroup potf2
106*
107* =====================================================================
108 SUBROUTINE dpotf2( UPLO, N, A, LDA, INFO )
109*
110* -- LAPACK computational routine --
111* -- LAPACK is a software package provided by Univ. of Tennessee, --
112* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
113*
114* .. Scalar Arguments ..
115 CHARACTER UPLO
116 INTEGER INFO, LDA, N
117* ..
118* .. Array Arguments ..
119 DOUBLE PRECISION A( LDA, * )
120* ..
121*
122* =====================================================================
123*
124* .. Parameters ..
125 DOUBLE PRECISION ONE, ZERO
126 parameter( one = 1.0d+0, zero = 0.0d+0 )
127* ..
128* .. Local Scalars ..
129 LOGICAL UPPER
130 INTEGER J
131 DOUBLE PRECISION AJJ
132* ..
133* .. External Functions ..
134 LOGICAL LSAME, DISNAN
135 DOUBLE PRECISION DDOT
136 EXTERNAL lsame, ddot, disnan
137* ..
138* .. External Subroutines ..
139 EXTERNAL dgemv, dscal, xerbla
140* ..
141* .. Intrinsic Functions ..
142 INTRINSIC max, sqrt
143* ..
144* .. Executable Statements ..
145*
146* Test the input parameters.
147*
148 info = 0
149 upper = lsame( uplo, 'U' )
150 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
151 info = -1
152 ELSE IF( n.LT.0 ) THEN
153 info = -2
154 ELSE IF( lda.LT.max( 1, n ) ) THEN
155 info = -4
156 END IF
157 IF( info.NE.0 ) THEN
158 CALL xerbla( 'DPOTF2', -info )
159 RETURN
160 END IF
161*
162* Quick return if possible
163*
164 IF( n.EQ.0 )
165 $ RETURN
166*
167 IF( upper ) THEN
168*
169* Compute the Cholesky factorization A = U**T *U.
170*
171 DO 10 j = 1, n
172*
173* Compute U(J,J) and test for non-positive-definiteness.
174*
175 ajj = a( j, j ) - ddot( j-1, a( 1, j ), 1, a( 1, j ), 1 )
176 IF( ajj.LE.zero.OR.disnan( ajj ) ) THEN
177 a( j, j ) = ajj
178 GO TO 30
179 END IF
180 ajj = sqrt( ajj )
181 a( j, j ) = ajj
182*
183* Compute elements J+1:N of row J.
184*
185 IF( j.LT.n ) THEN
186 CALL dgemv( 'Transpose', j-1, n-j, -one, a( 1, j+1 ),
187 $ lda, a( 1, j ), 1, one, a( j, j+1 ), lda )
188 CALL dscal( n-j, one / ajj, a( j, j+1 ), lda )
189 END IF
190 10 CONTINUE
191 ELSE
192*
193* Compute the Cholesky factorization A = L*L**T.
194*
195 DO 20 j = 1, n
196*
197* Compute L(J,J) and test for non-positive-definiteness.
198*
199 ajj = a( j, j ) - ddot( j-1, a( j, 1 ), lda, a( j, 1 ),
200 $ lda )
201 IF( ajj.LE.zero.OR.disnan( ajj ) ) THEN
202 a( j, j ) = ajj
203 GO TO 30
204 END IF
205 ajj = sqrt( ajj )
206 a( j, j ) = ajj
207*
208* Compute elements J+1:N of column J.
209*
210 IF( j.LT.n ) THEN
211 CALL dgemv( 'No transpose', n-j, j-1, -one, a( j+1, 1 ),
212 $ lda, a( j, 1 ), lda, one, a( j+1, j ), 1 )
213 CALL dscal( n-j, one / ajj, a( j+1, j ), 1 )
214 END IF
215 20 CONTINUE
216 END IF
217 GO TO 40
218*
219 30 CONTINUE
220 info = j
221*
222 40 CONTINUE
223 RETURN
224*
225* End of DPOTF2
226*
227 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
DGEMV
Definition dgemv.f:158
subroutine dpotf2(uplo, n, a, lda, info)
DPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblock...
Definition dpotf2.f:109
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79