164      SUBROUTINE cunmrq( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 
  165     $                   WORK, LWORK, INFO )
 
  172      CHARACTER          SIDE, TRANS
 
  173      INTEGER            INFO, K, LDA, LDC, LWORK, M, N
 
  176      COMPLEX            A( LDA, * ), C( LDC, * ), TAU( * ),
 
  183      INTEGER            NBMAX, LDT, TSIZE
 
  184      parameter( nbmax = 64, ldt = nbmax+1,
 
  185     $                     tsize = ldt*nbmax )
 
  188      LOGICAL            LEFT, LQUERY, NOTRAN
 
  190      INTEGER            I, I1, I2, I3, IB, IINFO, IWT, LDWORK, LWKOPT,
 
  191     $                   mi, nb, nbmin, ni, nq, nw
 
  197      EXTERNAL           lsame, ilaenv, sroundup_lwork
 
  210      left = lsame( side, 
'L' )
 
  211      notran = lsame( trans, 
'N' )
 
  212      lquery = ( lwork.EQ.-1 )
 
  223      IF( .NOT.left .AND. .NOT.lsame( side, 
'R' ) ) 
THEN 
  225      ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 
'C' ) ) 
THEN 
  227      ELSE IF( m.LT.0 ) 
THEN 
  229      ELSE IF( n.LT.0 ) 
THEN 
  231      ELSE IF( k.LT.0 .OR. k.GT.nq ) 
THEN 
  233      ELSE IF( lda.LT.max( 1, k ) ) 
THEN 
  235      ELSE IF( ldc.LT.max( 1, m ) ) 
THEN 
  237      ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) 
THEN 
  245         IF( m.EQ.0 .OR. n.EQ.0 ) 
THEN 
  248            nb = min( nbmax, ilaenv( 1, 
'CUNMRQ', side // trans, m,
 
  251            lwkopt = nw*nb + tsize
 
  253         work( 1 ) = sroundup_lwork(lwkopt)
 
  257         CALL xerbla( 
'CUNMRQ', -info )
 
  259      ELSE IF( lquery ) 
THEN 
  265      IF( m.EQ.0 .OR. n.EQ.0 ) 
THEN 
  271      IF( nb.GT.1 .AND. nb.LT.k ) 
THEN 
  272         IF( lwork.LT.lwkopt ) 
THEN 
  273            nb = (lwork-tsize) / ldwork
 
  274            nbmin = max( 2, ilaenv( 2, 
'CUNMRQ', side // trans, m, n,
 
  280      IF( nb.LT.nbmin .OR. nb.GE.k ) 
THEN 
  284         CALL cunmr2( side, trans, m, n, k, a, lda, tau, c, ldc,
 
  292         IF( ( left .AND. .NOT.notran ) .OR.
 
  293     $       ( .NOT.left .AND. notran ) ) 
THEN 
  298            i1 = ( ( k-1 ) / nb )*nb + 1
 
  316            ib = min( nb, k-i+1 )
 
  321            CALL clarft( 
'Backward', 
'Rowwise', nq-k+i+ib-1, ib,
 
  322     $                   a( i, 1 ), lda, tau( i ), work( iwt ), ldt )
 
  327               mi = m - k + i + ib - 1
 
  332               ni = n - k + i + ib - 1
 
  337            CALL clarfb( side, transt, 
'Backward', 
'Rowwise', mi, ni,
 
  338     $                   ib, a( i, 1 ), lda, work( iwt ), ldt, c, ldc,
 
  342      work( 1 ) = sroundup_lwork(lwkopt)
 
 
subroutine clarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
recursive subroutine clarft(direct, storev, n, k, v, ldv, tau, t, ldt)
CLARFT forms the triangular factor T of a block reflector H = I - vtvH
subroutine cunmr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
CUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf...
subroutine cunmrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
CUNMRQ