LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cunmr2.f
Go to the documentation of this file.
1*> \brief \b CUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf (unblocked algorithm).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CUNMR2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunmr2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunmr2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunmr2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CUNMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
20* WORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER SIDE, TRANS
24* INTEGER INFO, K, LDA, LDC, M, N
25* ..
26* .. Array Arguments ..
27* COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> CUNMR2 overwrites the general complex m-by-n matrix C with
37*>
38*> Q * C if SIDE = 'L' and TRANS = 'N', or
39*>
40*> Q**H* C if SIDE = 'L' and TRANS = 'C', or
41*>
42*> C * Q if SIDE = 'R' and TRANS = 'N', or
43*>
44*> C * Q**H if SIDE = 'R' and TRANS = 'C',
45*>
46*> where Q is a complex unitary matrix defined as the product of k
47*> elementary reflectors
48*>
49*> Q = H(1)**H H(2)**H . . . H(k)**H
50*>
51*> as returned by CGERQF. Q is of order m if SIDE = 'L' and of order n
52*> if SIDE = 'R'.
53*> \endverbatim
54*
55* Arguments:
56* ==========
57*
58*> \param[in] SIDE
59*> \verbatim
60*> SIDE is CHARACTER*1
61*> = 'L': apply Q or Q**H from the Left
62*> = 'R': apply Q or Q**H from the Right
63*> \endverbatim
64*>
65*> \param[in] TRANS
66*> \verbatim
67*> TRANS is CHARACTER*1
68*> = 'N': apply Q (No transpose)
69*> = 'C': apply Q**H (Conjugate transpose)
70*> \endverbatim
71*>
72*> \param[in] M
73*> \verbatim
74*> M is INTEGER
75*> The number of rows of the matrix C. M >= 0.
76*> \endverbatim
77*>
78*> \param[in] N
79*> \verbatim
80*> N is INTEGER
81*> The number of columns of the matrix C. N >= 0.
82*> \endverbatim
83*>
84*> \param[in] K
85*> \verbatim
86*> K is INTEGER
87*> The number of elementary reflectors whose product defines
88*> the matrix Q.
89*> If SIDE = 'L', M >= K >= 0;
90*> if SIDE = 'R', N >= K >= 0.
91*> \endverbatim
92*>
93*> \param[in] A
94*> \verbatim
95*> A is COMPLEX array, dimension
96*> (LDA,M) if SIDE = 'L',
97*> (LDA,N) if SIDE = 'R'
98*> The i-th row must contain the vector which defines the
99*> elementary reflector H(i), for i = 1,2,...,k, as returned by
100*> CGERQF in the last k rows of its array argument A.
101*> A is modified by the routine but restored on exit.
102*> \endverbatim
103*>
104*> \param[in] LDA
105*> \verbatim
106*> LDA is INTEGER
107*> The leading dimension of the array A. LDA >= max(1,K).
108*> \endverbatim
109*>
110*> \param[in] TAU
111*> \verbatim
112*> TAU is COMPLEX array, dimension (K)
113*> TAU(i) must contain the scalar factor of the elementary
114*> reflector H(i), as returned by CGERQF.
115*> \endverbatim
116*>
117*> \param[in,out] C
118*> \verbatim
119*> C is COMPLEX array, dimension (LDC,N)
120*> On entry, the m-by-n matrix C.
121*> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
122*> \endverbatim
123*>
124*> \param[in] LDC
125*> \verbatim
126*> LDC is INTEGER
127*> The leading dimension of the array C. LDC >= max(1,M).
128*> \endverbatim
129*>
130*> \param[out] WORK
131*> \verbatim
132*> WORK is COMPLEX array, dimension
133*> (N) if SIDE = 'L',
134*> (M) if SIDE = 'R'
135*> \endverbatim
136*>
137*> \param[out] INFO
138*> \verbatim
139*> INFO is INTEGER
140*> = 0: successful exit
141*> < 0: if INFO = -i, the i-th argument had an illegal value
142*> \endverbatim
143*
144* Authors:
145* ========
146*
147*> \author Univ. of Tennessee
148*> \author Univ. of California Berkeley
149*> \author Univ. of Colorado Denver
150*> \author NAG Ltd.
151*
152*> \ingroup unmr2
153*
154* =====================================================================
155 SUBROUTINE cunmr2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
156 $ WORK, INFO )
157*
158* -- LAPACK computational routine --
159* -- LAPACK is a software package provided by Univ. of Tennessee, --
160* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
161*
162* .. Scalar Arguments ..
163 CHARACTER SIDE, TRANS
164 INTEGER INFO, K, LDA, LDC, M, N
165* ..
166* .. Array Arguments ..
167 COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
168* ..
169*
170* =====================================================================
171*
172* .. Local Scalars ..
173 LOGICAL LEFT, NOTRAN
174 INTEGER I, I1, I2, I3, MI, NI, NQ
175 COMPLEX TAUI
176* ..
177* .. External Functions ..
178 LOGICAL LSAME
179 EXTERNAL lsame
180* ..
181* .. External Subroutines ..
182 EXTERNAL clacgv, clarf1l, xerbla
183* ..
184* .. Intrinsic Functions ..
185 INTRINSIC conjg, max
186* ..
187* .. Executable Statements ..
188*
189* Test the input arguments
190*
191 info = 0
192 left = lsame( side, 'L' )
193 notran = lsame( trans, 'N' )
194*
195* NQ is the order of Q
196*
197 IF( left ) THEN
198 nq = m
199 ELSE
200 nq = n
201 END IF
202 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
203 info = -1
204 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
205 info = -2
206 ELSE IF( m.LT.0 ) THEN
207 info = -3
208 ELSE IF( n.LT.0 ) THEN
209 info = -4
210 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
211 info = -5
212 ELSE IF( lda.LT.max( 1, k ) ) THEN
213 info = -7
214 ELSE IF( ldc.LT.max( 1, m ) ) THEN
215 info = -10
216 END IF
217 IF( info.NE.0 ) THEN
218 CALL xerbla( 'CUNMR2', -info )
219 RETURN
220 END IF
221*
222* Quick return if possible
223*
224 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
225 $ RETURN
226*
227 IF( ( left .AND. .NOT.notran .OR. .NOT.left .AND. notran ) ) THEN
228 i1 = 1
229 i2 = k
230 i3 = 1
231 ELSE
232 i1 = k
233 i2 = 1
234 i3 = -1
235 END IF
236*
237 IF( left ) THEN
238 ni = n
239 ELSE
240 mi = m
241 END IF
242*
243 DO 10 i = i1, i2, i3
244 IF( left ) THEN
245*
246* H(i) or H(i)**H is applied to C(1:m-k+i,1:n)
247*
248 mi = m - k + i
249 ELSE
250*
251* H(i) or H(i)**H is applied to C(1:m,1:n-k+i)
252*
253 ni = n - k + i
254 END IF
255*
256* Apply H(i) or H(i)**H
257*
258 IF( notran ) THEN
259 taui = conjg( tau( i ) )
260 ELSE
261 taui = tau( i )
262 END IF
263 CALL clacgv( nq-k+i-1, a( i, 1 ), lda )
264 CALL clarf1l( side, mi, ni, a( i, 1 ), lda, taui, c, ldc,
265 $ work )
266 CALL clacgv( nq-k+i-1, a( i, 1 ), lda )
267 10 CONTINUE
268 RETURN
269*
270* End of CUNMR2
271*
272 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1l(side, m, n, v, incv, tau, c, ldc, work)
CLARF1L applies an elementary reflector to a general rectangular
Definition clarf1l.f:127
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:72
subroutine cunmr2(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
CUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf...
Definition cunmr2.f:157