LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cgerq2.f
Go to the documentation of this file.
1*> \brief \b CGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CGERQ2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgerq2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgerq2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgerq2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CGERQ2( M, N, A, LDA, TAU, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, LDA, M, N
23* ..
24* .. Array Arguments ..
25* COMPLEX A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> CGERQ2 computes an RQ factorization of a complex m by n matrix A:
35*> A = R * Q.
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] M
42*> \verbatim
43*> M is INTEGER
44*> The number of rows of the matrix A. M >= 0.
45*> \endverbatim
46*>
47*> \param[in] N
48*> \verbatim
49*> N is INTEGER
50*> The number of columns of the matrix A. N >= 0.
51*> \endverbatim
52*>
53*> \param[in,out] A
54*> \verbatim
55*> A is COMPLEX array, dimension (LDA,N)
56*> On entry, the m by n matrix A.
57*> On exit, if m <= n, the upper triangle of the subarray
58*> A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
59*> if m >= n, the elements on and above the (m-n)-th subdiagonal
60*> contain the m by n upper trapezoidal matrix R; the remaining
61*> elements, with the array TAU, represent the unitary matrix
62*> Q as a product of elementary reflectors (see Further
63*> Details).
64*> \endverbatim
65*>
66*> \param[in] LDA
67*> \verbatim
68*> LDA is INTEGER
69*> The leading dimension of the array A. LDA >= max(1,M).
70*> \endverbatim
71*>
72*> \param[out] TAU
73*> \verbatim
74*> TAU is COMPLEX array, dimension (min(M,N))
75*> The scalar factors of the elementary reflectors (see Further
76*> Details).
77*> \endverbatim
78*>
79*> \param[out] WORK
80*> \verbatim
81*> WORK is COMPLEX array, dimension (M)
82*> \endverbatim
83*>
84*> \param[out] INFO
85*> \verbatim
86*> INFO is INTEGER
87*> = 0: successful exit
88*> < 0: if INFO = -i, the i-th argument had an illegal value
89*> \endverbatim
90*
91* Authors:
92* ========
93*
94*> \author Univ. of Tennessee
95*> \author Univ. of California Berkeley
96*> \author Univ. of Colorado Denver
97*> \author NAG Ltd.
98*
99*> \ingroup gerq2
100*
101*> \par Further Details:
102* =====================
103*>
104*> \verbatim
105*>
106*> The matrix Q is represented as a product of elementary reflectors
107*>
108*> Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
109*>
110*> Each H(i) has the form
111*>
112*> H(i) = I - tau * v * v**H
113*>
114*> where tau is a complex scalar, and v is a complex vector with
115*> v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
116*> exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
117*> \endverbatim
118*>
119* =====================================================================
120 SUBROUTINE cgerq2( M, N, A, LDA, TAU, WORK, INFO )
121*
122* -- LAPACK computational routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 INTEGER INFO, LDA, M, N
128* ..
129* .. Array Arguments ..
130 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
131* ..
132*
133* =====================================================================
134*
135* .. Local Scalars ..
136 INTEGER I, K
137* ..
138* .. External Subroutines ..
139 EXTERNAL clacgv, clarf1l, clarfg, xerbla
140* ..
141* .. Intrinsic Functions ..
142 INTRINSIC max, min
143* ..
144* .. Executable Statements ..
145*
146* Test the input arguments
147*
148 info = 0
149 IF( m.LT.0 ) THEN
150 info = -1
151 ELSE IF( n.LT.0 ) THEN
152 info = -2
153 ELSE IF( lda.LT.max( 1, m ) ) THEN
154 info = -4
155 END IF
156 IF( info.NE.0 ) THEN
157 CALL xerbla( 'CGERQ2', -info )
158 RETURN
159 END IF
160*
161 k = min( m, n )
162*
163 DO 10 i = k, 1, -1
164*
165* Generate elementary reflector H(i) to annihilate
166* A(m-k+i,1:n-k+i-1)
167*
168 CALL clacgv( n-k+i, a( m-k+i, 1 ), lda )
169 CALL clarfg( n-k+i, a( m-k+i, n-k+i ), a( m-k+i, 1 ), lda,
170 $ tau( i ) )
171*
172* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
173*
174 CALL clarf1l( 'Right', m-k+i-1, n-k+i, a( m-k+i, 1 ), lda,
175 $ tau( i ), a, lda, work )
176 CALL clacgv( n-k+i-1, a( m-k+i, 1 ), lda )
177 10 CONTINUE
178 RETURN
179*
180* End of CGERQ2
181*
182 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1l(side, m, n, v, incv, tau, c, ldc, work)
CLARF1L applies an elementary reflector to a general rectangular
Definition clarf1l.f:127
subroutine cgerq2(m, n, a, lda, tau, work, info)
CGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
Definition cgerq2.f:121
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:72
subroutine clarfg(n, alpha, x, incx, tau)
CLARFG generates an elementary reflector (Householder matrix).
Definition clarfg.f:104